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Abstract 
This thesis studies the problems of generation and maintenance of recirculations by 
Gulf Stream instabilities. Observations show that the horizontal structure of the jet 
and its recirculations suffer significant changes in time. Here, the role of internal 
dynamics of the jet is isolated as one of the possible sources of such variability, and 
the differences between barotropic and baroclinic instabilities are investigated. 

The problem of recirculation development is considered in a framework of a 
free spin down of the 2-layer and the l|-layer, zonally symmetric, quasi-geostrophic 
jets. Linear stability analysis shows that in strongly baroclinic basic flows, eddies are 
capable of driving recirculations in the lower layer through the residual meridional cir- 
culation. In strongly barotropic jets, the linearly most unstable wave simply diffuses 
the jet. Nonlinear stability analysis indicates that recirculations are robust features 
of the 2-layer model. The strength of recirculations is a function of the model's pa- 
rameters. It increases with a decrease in the value of the nondimensional ß due to 
potential vorticity homogenization constrained by enstrophy conservation. The recir- 
culation strength is a non-monotonic function of the baroclinic velocity parameter; it 
is the strongest for strongly baroclinic basic flows, weakest for flows with intermedi- 
ate baroclinic structure and of medium strength for strongly barotropic basic flows. 
Such non-monotonic behavior is the result of two different processes responsible for 
the recirculation development: linear eddy-mean flow interactions for strongly baro- 
clinic basic flows and strongly nonlinear eddy-eddy and eddy-mean flow interaction 
for strongly barotropic flows. In the case of the reduced-gravity model, recircula- 
tions develop only for infinite deformation raduis. Basic flows with finite deformation 
radius are only weakly supercritical and therefore produced negligible recirculations 
after equilibration. 

The problem of maintenance of the recirculations is coupled to the questions of 
existence of low frequency variability and of multiple dynamical regimes of a system 



consisting of a quasi-geostrophic jet and its recirculations. The problem is studied in 
a framework of a 2-layer or a reduced-gravity colliding jets model which has no wind- 
forcing. Instead, it is forced by inflows and outflows through the open boundaries. 
Only the western boundary of the domain is closed, and a free slip boundary condition 
is used there. The results of the numerical experiments show that when only the 
mechanism of barotropic instability is present, the model has two energy states for a 
wide range of interfacial friction coefficients. The high energy state is characterized 
by well-developed recirculations and displays strong variability associated with either 
large recirculating gyres and a weak eddy field or small recirculations and a strong 
eddy field. The low energy state is characterized by large meridional excursions in the 
separation point and large amplitude, westward propagating meanders that produce 
strong rings after interacting with the western wall. 

For physically relevant bottom friction values, the presence of baroclinic in- 
stability in the recirculation regions of the 2-layer model allows for a unique dy- 
namical regime characterized by well-developed recirculations in both layers. The 
low-frequency variability associated with the regime is weak and is related to merid- 
ional shifts in the position of the jet, to wrapping of the recirculations around each 
other, and to pulsations in their zonal extent. For strong bottom friction, the 2-layer 
model has only the mechanism of barotropic instability which reduces it to a l|-layer 
configuration; the model displays two dynamical regimes and strong low frequency 
variability in the upper layer, while the lower layer is strongly frictional. 

Thesis Supervisor: Glenn R. Flierl 
Title: Professor 
Massachusetts Institute of Technology 
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Chapter 1 

Introduction 

1.1    Background and Motivation 

1.1.1    Observational 

The discoveries of the intense recirculating gyres south and north of the Gulf Stream 

explained why the transport of the jet downstream of Cape Hatteras (150 Sv) is five 

times larger than the maximum wind-driven transport near the Straits of Florida (30 

Sv). The anticyclonic recirculation west of 50°W with the transport of about 60 Sv 

was first proposed by Worthington [40]. By incorporating both mass and geostrophy 

balance into an inverse model applied to the same data set, Wunsch [41] and Wunsch 

and Grant [42] postulated a cyclonic recirculation west of 50°W and north of 30°N 

with the transport of 20 Sv. 

By using long-term moored instruments near 55°W, Schmitz [37] described a 

flow regime that consisted of narrow (200 km wide) jet-like currents with eastward 

velocities on the flanks of the Gulf Stream and westward velocities further north and 

south. These currents were termed as "weakly depth-dependent" meaning that ve- 

locity amplitudes were similar at thermocline and abyssal depths and varied between 
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Figure 1-1: Contours of zonal velocity (cm s"1) along 55° W. Adapted from Richard- 
son [32]. 

6 and 10 cm s"1. Schmitz noted that these currents might be partly responsible for 

enhancing the transport of the Gulf Stream. 

The combination of surface drifters, SOFAR floats and current meters allowed 

Richardson [32] to further study the vertical and horizontal structure of the Gulf 

Stream near 55°W. In a region of high eddy kinetic energy and its gradient, he 

found an eastward jet flanked by two recirculations. Estimated at 93 Sv, the total 

mean volume transport of the Gulf Stream was three times larger than that near 

the Straits of Florida. Such an enhancement was due to additional 41 Sv and 29 

Sv carried respectively by the 300 km wide northern and southern counter-currents. 

Their westward velocities did not change significantly with depth and ranged from 2 

to 10 cm s-1 (Figure 1-1). 

The northern recirculation was examined by Hogg et al. [14]. Based on long- 

term current and tracer measurements, they concluded that the Northern Recirculat- 

ing Gyre, located between the New England Seamount Chain and the Grand Banks, 
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Figure 1-2: Schematic circulation in the western North Atlantic. Adapted from Hogg 

[12]. 

transported about 40 Sv of water to the west of 63°W. Half of this water was re- 

turned back to the deep Gulf Stream. Consistent with the previous studies, the 

vertical structure of the flow between 500 m and the bottom was weakly depth de- 

pendent and similar to that of the southern recirculation. It was found also that the 

northern recirculation exchanged water properties with the Deep Western Boundary 

Current. Such tracers as freon and oxygen were further advected into the interior and 

homogenized within the gyre. 

Estimates of the synoptic transport of the Gulf Stream were obtained by Hogg 

[12]. Synoptic mean circulation is different from traditional Eulerian mean circulation 

in that it is computed in a coordinate frame aligned with the instantaneous axis 

of the Stream, and therefore it accounts for changes both in the path and in the 

meandering activity of the jet. Hogg showed that downstream of Cape Hatteras, 

the synoptic transport was depth-independent and reached 150 Sv between 55°W 

and 60°W. He argued that about 120 Sv might be evenly partitioned between the 

northern and southern recirculations in the synoptic mean frame compared to about 

60 Sv in Eulerian mean frame. Figure 1-2 shows a schematic circulation in the western 

13 
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Figure 1-3: Maps of monthly averaged sea surface height anomalies in western North 
Atlantic for December 1986 (a) and October 1988 (b). Shaded area represents anoma- 
lies larger than 2.5 m in the southern recirculating gyre. Adapted from Kelly et al 
[19]. 

North Atlantic which is characterized by the eastward flowing Gulf Stream and two 

recirculations. 

Observations revealed that the horizontal structure of the Gulf Stream recir- 

culations is strongly time-dependent. For example, the Geosat altimeter observations 

of sea surface height in the Gulf Stream (Kelly et al. [19]) have demonstrated a 

trend over a period of two years from a state with elongated recirculating gyres and 

a weakly meandering jet to a state with contracted gyres and a strongly meander- 

ing eastward jet (Figure 1-3). There was no significant correlation between the gyre 

fluctuations and the non-seasonal wind curl line tilt. However the surface transport 

14 



fluctuations, which Kelly et al. suggested were due to variations in the longitudinal 

size of the recirculations, were correlated with the changes in both the jet's path and 

in the local wind stress fields. The dominant mode of variability had a time scale of 

5 to 9 months. 

Observational data of sea surface temperature of the Gulf Stream between 

75°W and 60°W from April of 1982 to December of 1989 revealed a dominant 9- 

month period in the meandering intensity of the jet (Lee and Cornillon [20]). The 

correlation between the meandering intensity of the jet and the temporal variation 

in the mean position of the jet, which had annual and inter-annual oscillations, was 

small. Lee and Cornillon suggested that the 9-month cycle might be connected to 

the instability time scale. 

The recirculations might also affect the dynamics of the Gulf Stream by ad- 

verting a given meander westward and thus by stimulating the ring formation process. 

On the other hand, due to this westward advection, rings ultimately rejoin the Gulf 

Stream and return some of the heat and potential vorticity to the jet (Richardson 

[31]). Warm core rings which are formed on the northern side of the Stream bring 

anticyclonic vorticity into the cyclonic Northern Recirculating gyre. The opposite is 

true for the cold core rings introducing cyclonic vorticity into the anticyclonic south- 

ern recirculating gyre. Therefore, the existence of the rings may generally tend to 

decelerate the flow in the rectified regions. An increase in the strength and amplitude 

of the meanders creates a higher probability of having rings formed and, therefore, 

will enhance the mean transfer of heat and momentum between the sub-tropical and 

the sub-polar gyres. 

Low-frequency variability is well documented in observations of the world 

oceans. Twenty two years of hydrographic data along 137° show strong inter-annual 

bimodal path variations in the Kuroshio (Qiu and Joyce [30]). The net transport of 

the Kuroshio system which includes the jet and its recirculations increases by 30% 

during the meander-path years. The increase is primarily due to the decrease in the 

15 
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Figure 1-4: Time averaged fields of upper layer (left) and lower layer (middle) stream- 
function and of interface height (right). Adapted from Holland and Rhines [16]. 

recirculation strength. Thus, recirculations are strongest during the straight-path 

years. Observations of East Australian current (Roemmich and Cornuelle [33]) and 

of Brazil and Malvinas currents (Olson et al. [26]) also display strong inter-annual 

variability. 

1.1.2    Dynamical 

Strong westward recirculations appeared naturally in eddy-resolving, wind-driven, 

general circulation models (for a review see Holland et al. [17]). The results of these 

numerical experiments showed the importance of eddies in the local potential vor- 

ticity balance of the recirculations. For example, in a two-layer quasi-geostrophic 

wind-driven model of Holland and Rhines [16], two tight, intense, inertial recircula- 

tions developed on the flanks of an eastward jet in both layers (Figure 1-4). The 

circulation theorem applied to the time mean streamlines implied that the abyssal 

recirculations were forced from above by eddy thickness (or eddy heat) fluxes, and 
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Figure 1-5: Time averaged upper layer (left) and lower layer (middle) eddy kinetic 
energy and eddy potential energy (right). Adapted from Holland and Rhines [16]. 

the upper layer recirculations were driven by the eddy Reynolds stresses (or eddy 

momentum fluxes). Energy transformation between the eddies and the mean flow 

was maximum in the areas of maximum eddy kinetic and eddy potential energy. 

The latter maxima occurred in a region of barotropically and baroclinically unstable 

eastward jet and inertial recirculations (Figure 1-5). 

These results compared well with observed surface eddy kinetic (Figure 1- 

6) and eddy potential energy, which were an order of magnitude larger near strong 

western boundary currents and their eastward extensions than in the interior of the 

ocean. Holland and Rhines concluded that the abyssal layer dynamics were primarily 

eddy-driven and acted similar to the down-gradient diffusion of potential vorticity. 

In the upper layer, the same parameterization held true near the jet separation point 

and in the region of westward recirculations. 

Some analytical models have taken into account the fact that the observed 

transport of the Gulf Stream is several times larger than that given by the lin- 

17 
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Figure 1-6: Surface eddy kinetic energy per unit mass in cm2s-2 for the North Atlantic 
Ocean on a 1° grid. Adapted from Schmitz et al. [37]. 

ear Sverdrup balance and therefore have focused on strongly nonlinear dynamical 

regimes. The recirculations were given as a steady, inertial, almost free (forcing and 

dissipation were thought to be negligible to the leading order) solution of the quasi- 

geostrophic equations. In both barotropic (Cessi et al. [5]) and baroclinic (Marshall 

and Nurser [24]; Greatebatch [9]; Cessi [6]) models, eddies were parameterized as lat- 

eral down-gradient diffusion of potential vorticity and were shown to play crucial role 

in generating the recirculating gyres. 

Jayne et al. [18] studied recirculations emerging due to both the internal dy- 

namics of the jet and the inertial forcing. A quasigeostrophic barotropic model was 

forced by an unstable eastward jet inflow on the western boundary and a stabilized 

eastward jet outflow on the eastern boundary. The resulting barotropic eddies pro- 

duced regions of homogenized potential vorticity north and south of the jet, giving 

rise to recirculations. Their strength was found to be a monotonically decreasing 

function of nondimensional ß. However, it was concluded that in the sense of "eddy 

18 



Sverdrup relation", ßv = -V • Wcf, the recirculations were predominantly inertial 

currents and only weakly forced by the eddies. 

Therefore, the results of numerical experiments and the observational data 

suggest strong correlation between the dynamics of the Gulf Stream, its recirculations 

and the western boundary current. In the first part of the thesis, we study the problem 

of the development of the recirculations during free spin down of an unstable, zonally 

symmetric, quasi-geostrophic jet. The following questions are addressed: 

• Can recirculations develop in a zonally symmetric unstable jet? If so, what is 

the basic mechanism driving the recirculations? 

• How do the jet strength and structure influence recirculation characteristics? 

• What are the differences in the equilibrated structure for baroclinic and barotropic 

jets? 

Zonal symmetry combined with the absence of any forcing excludes the possibility 

of closing of the potential vorticity contours which may lead to the recirculation 

development. Hence, eddies generated by the instabilities if the jet provide the only 

mechanism for the changes in the mean flow structure and therefore for the generation 

of recirculations. 

Many time-dependent wind-driven models have exhibited intrinsic low fre- 

quency variability that is often associated with the existence of multiple dynamical 

regimes. For example, in a reduced-gravity, free slip, quasi-geostrophic model with 

interfacial friction and biharmonic diffusion, McCalpin and Haidvogel [25] observed 

chaotic transitions between three different regimes (Figure 1-7): a high energy state 

with a strong, straight and deep penetrating eastward jet, a low energy state with a 

weakly penetrating jet and violent meanders and eddies, and a medium energy state 

with intermediate jet penetration and some eddy/meander formation. It was hypoth- 

esized that variations in the eddy-western boundary current interaction provided a 
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Figure 1-7: Contours of the time-averaged interface anomaly field for high energy 
period (lower left), low energy period (lower right), and medium energy period (upper 
right). Adapted from McCalpin and Haidvogel [25]. 

mechanism for the persistence of different regimes and the transitions between them. 

Similar high and low energy regimes were observed by Spall [39] in a wind-forced 

primitive equation model with bottom friction and lateral diffusion and with open 

boundary conditions. The presence of the Deep Western Boundary Current and its 

interaction with the upper layer wind-driven current were crucial for the existence of 

multiple dynamical regimes. A number of wind-driven, two-layer, quasi-geostrophic 

models also showed multiple dynamical regimes, such as those of Meacham (personal 

communication) and Berloff and McWilliams [4]. 

However, in the wind-driven models, is it hard to distinguish between two 

possible mechanisms affecting low frequency variability: the global structure of the 

wind forcing and the internal dynamics of an unstable jet. In the present study, 

we isolate the latter as the mechanism responsible for low frequency variability and 

address the following questions: 

20 



• Are low frequency variability and multiple dynamical regimes intrinsic parts of 

the internal dynamics of a quasi-geostrophic jet and its recirculations? 

• Are there any differences between barotropic and baroclinic instabilities as 

mechanisms affecting low frequency variability? 

• Which dynamical regimes are associated with low frequency variability and 

which processes are responsible for the transitions between them? 

• Are there any differences between low frequency variability in the globally forced 

and boundary-forced models? 

1.2    Outline of the Thesis 

This thesis studying the problems of generation and maintenance of recirculations 

by the Gulf Stream instabilities consists of two parts. The first part investigates the 

development of recirculations during the spin down of a quasi-geostrophic, zonally 

symmetric, unstable jet. The second part of the thesis examines the problem of 

existence and maintenance of low frequency variability and of multiple dynamical 

regimes due to the mechanisms of barotropic and baroclinic instabilities. 

Chapter 2 addresses the first problem in a framework of the reduced-gravity 

and the two-layer quasi-geostrophic, doubly-periodic, zonally symmetric models. It 

examines the following questions: what is the basic mechanism for driving the west- 

ward flows; how do the jet strength and structure influence recirculation character- 

istics; what are the differences in the equilibrated structure for the baroclinic and 

barotropic jets? The chapter begins with the formulation of the numerical model 

and is followed by the discussion of the results of a time-dependent two-layer case. 

The strength and the structure of the recirculations, arising due to eddy heat and 

momentum fluxes, are examined for different values of nondimensional ß—parameter 

and for a set of basic flows with varying degree of baroclinicity. To study the nature of 
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eddy-mean flow interaction and its role in recirculation generation, a linear stability 

analysis is performed for basic flows with different degrees of baroclinicity and various 

jet widths. A hierarchy of "mean-flow" models, which includes only a mechanism of 

eddy-mean flow interactions, is further examined. The formulation and the numeri- 

cal results of the time-dependent reduced-gravity model and a corresponding linear 

stability analysis follow the discussion. 

Chapters 3 introduces a two-layer, quasi-geostrophic, colliding jets model, 

which is forced by the inflows and outflows through the open boundaries. Such forc- 

ing allows the isolation of barotropic and baroclinic instabilities as the mechanisms 

responsible for multiple dynamical states and low frequency variability. The chapter 

begins with the description of model equations, initial and boundary conditions, fac- 

tional operators and dimensional and nondimensional parameters. The importance of 

local forcing and its difference from the global wind forcing are illustrated in a section 

on model energetics. The dynamics of rings on the western boundary are discussed 

at the end of the chapter. 

Chapter 4 reports the results of the reduced-gravity, colliding jets model, which 

isolates the importance of barotropic instability and dissipation for low frequency vari- 

ability. Following the model formulation, the antisymmetric steady solutions and their 

linear stability properties are presented for various values of the interfacial drag coef- 

ficient. The chapter further focuses on the sensitivity of the time-dependent solutions 

to changes in biharmonic diffusion and interfacial friction. A detailed description of 

a reference run shows that the model has two preferred energy states, each associ- 

ated with a unique dynamical regime. The discussion of the dynamical differences 

between the states and their transitions as well as a comparison with the results of 

the wind-forced models follow. 

Chapter 5 addresses a problem of low frequency variability and multiple dy- 

namical states in a framework of a two-layer, colliding jets model, which includes 

both baroclinic and barotropic instability mechanisms. The sensitivity of the model 
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to changes in the value of the bottom friction parameter is examined and is related 

to a scaling analysis. The discussion of a reference run includes the analysis of energy 

time series, an extended empirical orthogonal function decomposition for low- and 

high-frequency variability and a diagnosis of zones of baroclinic growth. The results 

are compared with those of the reduced-gravity, colliding jets model and a two-layer, 

wind-forced models. 

Chapter 6 presents conclusions for the Thesis, summarizes limitations of the 

present study, poses questions for further research and discusses relevance of this work 

to the real ocean. 
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Chapter 2 

Generation of Recirculations in a 

Two-Layer Quasi-Geostrophic 

Zonally Symmetric Jet Model 

The present Chapter addresses the following questions: 

• Can recirculations develop in a zonally symmetric unstable jet? If so, what is 

the basic mechanism driving the recirculations? 

• How do the jet strength and structure influence recirculation characteristics? 

• What are the differences in the equilibrated structure for baroclinic and barotropic 

jets? 
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2.1    Model Formulation 

2.1.1 Model Equations 

A time-dependent, two-layer, quasi-geostrophic, semi-spectral model is integrated in 

a square, doubly periodic domain. The governing potential vorticity equations are 

d     dipt d      dijji d       .oWi      <r,c o i\ 

where qt = VVi - H^i ~ $»-.•)> F{ = ßL2/g'Du ß = ßdimL2/U and i = 1,2. Since 

we are interested in the problem of a nonlinear equilibration of a quasi-geostrophic 

jet, the forcing is set to zero. However, a numerical filter, T, is required for numerical 

stability; it acts to remove small scale enstrophy without dissipating too much energy. 

Because of the periodicity in the meridional direction, two sponge layers are set up 

near the northern and southern boundaries. In Equation (2.1), they are represented 

by a sponge operator <S;. Sponges prevent any disturbance which leaves the domain 

through the northern (southern) boundary from reentering it from the south (north). 

More details on the form of the sponge operator are presented later. The numerical 

code is modified from a program by Glenn Flierl (personal communication). 

2.1.2 Dimensional Scales 

The dimensional scales of the model are chosen as follows. The horizontal length 

scale, L, is 407 km. The model domain is square defined by Ldomain x Ld0main, where 

Ldomain = 27rL = 2560 km. The upper and lower layer depths are Dx — 1 km and 

Di — 4 km respectively. The baroclinic deformation radius, Ldef, is 40 km. The 

velocity scale, U = 0.8 m sec-1, is chosen as the maximum velocity in the upper layer. 

The time scale is chosen as an advective time scale, Tadv — L/U = 29.6 days. The 

Coriolis parameter is represented by / = /o + ßy, where /0 = 10-4 sec-1 and 

ß = 2 • IQ"11 m-^ec"1. 
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2.1.3    Nondimensional Parameters 

The model is characterized by four nondimensional parameters: 

• the ratio of the advective time scale to the barotropic Rossby wave period: 

ß = ßdimL2/U; 

• the inverse deformation radius, defined as the ratio of a horizontal 

length scale to the internal baroclinic deformation radius:  7 = y/Fx + F2 = 

• the depth ratio: 6 = Di/D2; 

• the ratio of the upper layer initial velocity amplitude, uu to the lower layer 

initial velocity amplitude, u2 :  a = Ui/u2. 

In all the experiments, the values of S and 7 are fixed at 0.25 and 10.18 

respectively and the values of ß and a are varied. 

2.1.4    Sponge Operator 

As was mentioned before, two sponge layers are set up near the northern and southern 

boundaries to remove periodicity in the meridional direction. After performing a series 

of experiments with different widths of the sponge layer, we found the optimal width 

of about 300 km, which allows enough distance for the decay of the disturbances. 

Whenever a sponge layer was too narrow, it acted as a reflector rather than an 

absorber. 

The sponge operator has the following form: 

Si = ~ny)(Qi-ßy)-^^. (2.2) 

The first term is represented by a sponge function, 11 (Figure 2-1), acting to relax 

the potential vorticity field to the planetary vorticity. This type of damping is similar 
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Figure 2-1: Sponge function, 71, defines the ratio of the advective time scale to the 
decay time scale. The latter varies from being infinite in the interior of the domain 
to 0.5 day near the boundary. 

to bottom friction. The meridionally dependent friction coefficient, 7Z(y), is the ratio 

of the advective time scale to the decay time scale, Tadv/Tdecay. Within each sponge 

layer, the decay time scale, Tdecay, slowly decreases from being infinite to 0.5 day at 

the boundary. 

The second term in the sponge operator involves the meridional gradient of 

a sponge function acting on the velocity field. It helps to remove spurious energy 

arising from boundary currents with zero vorticity. This term comes naturally from 

the following velocity damping equations: 

Dui 
Dt 

= -nix^Xm-Vi), i = i,2, (2.3) 

where Uj = (ui,Vi)T is a horizontal velocity vector, Uj = (Ui,Vi)T is a relaxation 

velocity vector and 1Z is a friction coefficient, which in general could be a function of 

spatial variables. The equation for relative vorticity, Q = ^f — ^, becomes 

Dt 

_     dK       dlZ 
-7lQ - —Vi + -z-Ui 

ox oy 
(2.4) 
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Zonal symmetry in the model implies that the frictional coefficient changes only in 

the meridional direction, i.e. §J = 0. The relaxation velocity, Ui; was chosen to be 

zero. 

2.1.5 Basic Flow 

The basic velocity profile corresponds to a thin eastward jet and is defined as 

«(,) = -«*&!>=_*      i = 1>2. (25) 

oy cosh wy v     ' 

The amplitude of the lower layer nondimensional velocity, u2, varies from being zero 

to the amplitude of the upper layer nondimensional velocity, u^. Thus, we can create 

both strongly baroclinic jets or purely barotropic jets (Figure 2-2a). The parameter 

w defines the width of the jet and is chosen to equal 8.14, which corresponds to a 100 

km wide basic flow. 

The basic potential vorticity is then given by 

Qi  = ßv + 7£r + Fi(*i-*i)  = ßy + t^rvyl-^- + ^.(uj-ui)\   (2.6) oy [ cosh wy      w    J J ' 

The basic potential vorticity gradient changes sign, so that it satisfies the necessary 

condition for instability (Figure 2-2b). The results of the linear stability analysis are 

presented later. 

2.1.6 Initialization 

We perturb the basic flow given by Equation (2.5) with a sum of wave packets of 

different wave lengths, each having a Gaussian envelope. Initially, the disturbance is 

localized in the middle of the domain. 

2.2    Linear Stability Analysis of a Two-Layer Model 

Two processes play major roles in a nonlinear spin down of an unstable quasi- 

geostrophic jet: eddy-mean flow and eddy-eddy interactions.  The following section 
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Figure 2-2: The nondimensional velocity (a) and potential vorticity (b) for the upper 
layer (solid line) and lower layer (dash line) initial basic flow. Parameters: Ui = 
1, u2 = 0.1, w = 8.14, ß = 4.15, 7 = 10.18, 5 = 0.25, U = 0.8 m sec"1. North-south 
extent of the full domain is [—ir, ir]. 

reports the results of a linear stability analysis which studies the influence of the 

barotropic and baroclinic eddy field on the mean flow structure. 

Although the nonlinear model defined by Equation (2.1) has a numerical fric- 

tional operator and sponge layers near the doubly-periodic meridional boundaries, the 

linearized model is solved for an inviscid case in a channel. Such simplifications are 

possible for two reasons. First, in the nonlinear model, friction is very weak. Second, 

as we show later, unstable normal modes resulting from the linear stability analysis 

are zero in the regions where a sponge operator of the nonlinear model is not trivial. 
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2.2.1 Linear Model Formulation 

Linearizing the inviscid quasi-geostrophic equations of motion (2.1) around a basic 

flow gives: 

■J- + J(*i,qi) +   J(<f>i,Qi)  =0, (2.7) 

where ^(y) = - Jy Ui{y')dy' and Qi(y) = ßy + F^^ - ty) + <g*t are the basic flow 

streamfunction and potential vorticity fields, ^ = <fn{x,y,t) and q{ = qi(x,y,t) are 

the perturbation streamfunction and potential vorticity fields and i = 1,2 is a layer 

index. We look for a zonally periodic solution of the form 

k{x, y, t) = Realty) e**^"^), (2.8) 

where A; is a horizontal wave number and c is the phase speed of the disturbance. 

Substituting such a solution into Equation (2.7) gives the following problem for the 

normal mode meridional structure: 

(Ui(y)-c)(^-kHi + Fi($3_i-$i)) + $i^  = 0, .- = 1,2, (2.9) 

subject to no-normal-flow boundary conditions on the lateral boundaries 

$i (y = TT)  =  $i (y = -TT)   = 0. (2.10) 

2.2.2 Method of Solution 

The linear problem (2.9) is solved numerically. Discretizing the equations at yj = 

-TT + Ay(j - 1), where Ay = -^ and j = 1,..., N, using a second order finite dif- 

ference scheme and incorporating boundary conditions (2.10), provides a generalized 

eigenvalue problem of the form: 

A$ = cB$. (2.11) 

Matrices A and B have the following structures: 

30 

A 



B = 
zx v2 

where Hi and Vi are tri-diagonal matrices defined as 

rli  — 

Af0 UP 0 0 ••   0 0 

V? tf> up 0 ••   0 0 

0 uP 144) uP  ■ ••   0 0 

0 0 0 0 •• iT -2) TjW-2) 

0 0 0 0 • • uP -1) h(N-l) 

with diagonal elements 

tf)  = VU) (_2 _ Ay2(A;2 + Fi)) + A?/
2^0), 

U\ U) Ui(y = yj), 

and 

pr 1 0 0   • ••   0           0 

i (3) 
Pi 1 0   • •   0           0 

0 1 (4) 
Pi 1 • •   0           0 

0 0 0 0   • ■ Pi       1 

0 0 0 0   • • 1      p 
(N-l) 

with diagonal elements 

Pi 
(i) -2 - Ay^ + F^ 

(2.12) 

(2.13) 

for i  =   1,2 and j  =   2,- ■ ■ ,N — 1. Matrices Qi and Z{ are diagonal with nonzero 

elements equal gf'  = UPFiAy2 and zf'  =   F{Ay2 respectively. 

MATLAB's SPTARN routine was used to solve the generalized eigenvalue 

problem defined in Equation (2.11).    We performed a series of experiments with 
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Figure 2-3: Real, cr, (a) and imaginary, c*, (b) parts of an eigenvalue as functions of 
resolution, N, for ux = 1, u2 = 0.99, ß = 4.15, 7 = 10.18, 6 = 0.25, Jfc = 8, U = 0.8 
m sec-1. 

different resolutions to ensure sufficient convergence. Figure 2-3 shows the real and 

imaginary parts of an eigenvalue as functions of resolution, N, when Wi = 1, u2 = 

0.99, ß = 4.15, 7 = 10.18, and k = 8. ./V = 500 was found to be sufficient for the 

choice of parameters considered in the numerical experiments. 

2.2.3    Maximum Growth Rates of Unstable Modes 

The first set of experiments was performed for the basic flow with the following 

parameters: ux = 1, ß = 4.15, 7 = 10.18, 5 = 0.25 and the lower layer basic velocity 

amplitude u2 varying between 0 and 0.99. Typical unstable eigenvalues are presented 

in Figure 2-4. As k increases, the number of unstable modes decreases from three to 

zero. Long waves are weakly unstable. Notice that the linear stability analysis was 

performed only for the integer horizontal wave numbers, k = 1,2, ...,n. The reason 
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is that only waves with such wave numbers are present in the corresponding fully 

nonlinear doubly-periodic model. 

0.5 
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Figure 2-4: The growth rates, kci, (o) and the corresponding real parts of the phase 
speed, cr, (*) as functions of a horizontal wave number, k. Parameters: Mi = 1, u2 = 
0.99, ß = 4.15, 7 = 10.18, 6 = 0.25, U = 0.8 m sec"1. 

Figure 2-5 shows the maximum growth rate, kci, as a function of a horizontal 

wave number, k. In this experiment, the amplitude of the upper layer nondimen- 

sional velocity, u\, is fixed at 1.0. The amplitude of the lower layer nondimensional 

velocity, «2, varies between 0.0 and 0.99. Clearly, the maximum growth rate is not a 

monotonic function of u2 (Figure 2-6); as the flow becomes more barotropic, it first 

decreases, reaching a minimum at u2 = 0.2, and then increases, reaching a maxi- 

mum at «2 = 0.99. This non-monotonic behavior suggests that it is the baroclinic 

mode that dominates linear growth for u2 < 0.2. As the barotropicity of the basic 

flow increases, the barotropic mode becomes more and more important, and finally 

it dominates the linear growth. 

The dimensional length of the most unstable wave increases from 320 km 

(k = 6) to 426 km (k = 8) with a decrease in baroclinicity.  Correspondingly, the 
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Figure 2-5: The maximum growth rate, kcu as a function of a horizontal wave number, 
k. The amplitude of the upper layer nondimensional basic velocity, uu is 1. The 
amplitude of the lower layer nondimensional basic velocity, u2, changes from 0 to 0.2 
(a) and from 0.2 to 0.99 (b). Parameters: ß = 4.15, 7 = 10.18, 6 = 0.25, U = 0.8 m 
sec-1. 

dimensional phase speed changes from 0.07 m sec-1 to 0.34 m sec-1. Independent of 

baroclinicity, the flow is unstable for 0 < A; < 15, so that only waves shorter than 170 

km are stable. 

The meridional structure of the most unstable mode is similar for all considered 

values of the lower layer nondimensional velocity amplitude, u2 (Figure 2-7). The 

mode is nonzero only in the interior of the domain, which justifies the use of the 

linear model in a periodic channel and neglecting of the sponge layers. 

Nondimensional ß has a stabilizing effect on the mean flow (Figure 2-8). For 

strongly baroclinic cases (a), waves longer that 900 km are linearly stable when ß = 

6.64. The long wave cutoff disappears for smaller ß. For barotropic basic flows (b), 

there is no long wave cutoff. Waves shorter than 160 km are stable. 
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Figure 2-6: The maximum growth rate, kci, (solid line) and the corresponding nondi- 
mensional phase speed, cr, (dashed line) as functions of the amplitude of the lower 
layer nondimensional basic velocity, u2. Parameters: i*i = 1.0, ß = 4.15, 7 = 
10.18, 6 = 0.25, [/ = 0.8m sec-1. 

2.2.4    Wave - Zonal Mean Flow Interactions 

The Eulerian zonal mean circulation is calculated to understand how the most linearly 

unstable mode affects the mean flow. We assume the amplitude of the linear mode 

to be small and take the zonal average of Equations (2.7). Repeating the arguments 

given by Shepherd [35] and adopting his notations imply the following problem: 

d ,d^ 
^(TT + %-,-^))   =   -J(<ßi,Qi), » = 1,2, drdy2 

subject to boundary conditions 

(2.14) 

ipi = 0 at y = — 7T, 7T, (2.15) 

where bar denotes zonally averaged fields, and 0 and q are the streamfunction and 

the potential vorticity fields of the most unstable mode. 
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Figure 2-7: The real (solid line) and imaginary (dashed line) parts of the most unstable 
mode, <%, k = 6) in the upper layer (a) and in the lower layer (b). Parameters: 
Mi = 1.0, u2 = 0.0, ß = 4.15, 7 = 10.18, ö = 0.25, U = 0.8m secT1. 

Substituting a normal mode form into the forcing term, J"(&ift). of the above 

equations implies that the solution must obey the following: 

Thus, the problem (2.14) can be rewritten as 

,2fcc,-t 
(2.16) 

Qiyy + Fi(e3-i ~ Si) = -_/m(^w - fi^fc + Fifa-ißy - ^3-i)y4)),(2.17) 

where i = 1,2, j = 3 - i are layer indices, k and A;c,- are the horizontal wave number 

and the growth rate of the most unstable mode and a star sign denotes complex 

conjugate. The boundary conditions are given by Q(-n) = Q(ir) = 0. 

Finite differencing reduces problem (2.17) to solving AQ = B, where 

Ux   G2 
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Figure 2-8: The maximum growth rate, kc{, as a function of a horizontal wave number, 
k, for ß = (6.64,4.74,3.68,2.76,2.21). Parameters: ui = 1, u2 = 0 in (a) and «i = 
1, «2 = 0.99 in (b). 
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Individual blocks of the matrix have the following structures: 

rii   — 

-3 4 -1 0    • ••   0 0 0 

1 hi 1 0    • ••   0 0 0 

0 1 hi 1   • ••   0 0 0 

0 0 1 hi   ■ ••   0 0 0 

0 0 0 0    • • • 1 hi 1 

0 0 0 0    • •• 1 -4 3 

where h2- = -2 - Ay2i^-, and 

Qi = 

where g{ = Ay2Fu i = 1,2. 

0 0 0 0   • •   0 0 0 

0 Si 0 0   • •   0 0 0 

0 0 Si 0   • •   0 0 0 

0 0 0 0   • •   0 Si 0 

0 0 0 0   • •   0 0 0 

2.2.5    Eddy Energy Equation 

Transient eddies can grow at the expense of kinetic or potential energy, or both, 

which implies barotropic, baroclinic or mixed nature of the instability process. The 

equation for eddy energy, E', (Pedlosky [27]) for the linear model is given by 

d _, 
—E'  = J* (EKEd + EKEC2 + EPEC) dy, (2.18) 

where the i-the layer eddy kinetic energy conversion, EKEd, is produced by the 

depth-weighted Reynolds stresses acting on the basic state shear: 

EKECi  =   Dte-dfW>t = 1'2' 
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Figure 2-9: The eddy energy convergence terms: upper layer kinetic, EKECi, lower 
layer kinetic, EKEC2, potential, EPEC, and total for u2 = 0 (a), u2 = 0.2 (b) and 
u2 = 0.99 (c). Parameters: ux = 1, ß = 4.15, 7 = 10.18, 8 = 0.25, [/ = 0.8m sec-1. 
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and the eddy potential energy conversion, EPEC, is produced by the meridional eddy 

heat flux multiplied by the basic state temperature gradient: 

EPw - Mi+p*^-„,)<£*. (,20) 

When «2 = 0.99 (Figure 2-9c), the instability is purely barotropic; the potential 

energy conversion is negligible. For u2 = 0.2 (Figure 2-9b), the instability is mixed; 

both the kinetic and potential eddy energy conversion terms are positive and both 

participate equally in the growth in time of the total eddy energy. For the case of 

M2 = 0 (Figure 2-9a), the instability is predominantly baroclinic with some barotropic 

contribution in the upper layer. In the lower layer, the eddy energy increases only 

due to the eddy heat fluxes. Thus, taking into account different nature of linear 

instability, we expect different impact of transient disturbances on the mean flow. 

2.2.6    Transformed Eulerian Mean Circulation 

To illuminate the dynamics of the linearly growing disturbance and its impact on the 

mean flow, the Transformed Eulerian Mean (TEM) circulation is calculated (Andrews 

and Mclntyre [1], Pedlosky [27], Shepherd [35]): 

-^  = tJj + vEPi, t = l,2. (2.21) 

In the TEM formulation, the time variations of the mean flow velocity result 

from the divergence of the Eliassen-Palm fluxes: 

V-EPi = vat =  -g-(im) + (-lyFiViifa - fa), (2.22) 

and from the residual meridional circulation: 

v*  = vf-i-iyFiViifa-fa), (2.23) 

where vf is an ageostrophic meridional velocity and (uuVi)T =  (-^, f^)r is a 

geostrophic perturbation velocity vector. 
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Figure 2-10: (a): Upper layer zonal mean acceleration, ^-. (c): Upper layer north- 
ward potential vorticity flux, vTqi. (e): Upper layer residual meridional circulation, 
v{. (b), (d) and (f): same for the lower layer. Parameters: ui = 1, u2 = 0, ß = 
4.15, 7 = 10.18, 8 = 0.25, U = 0.8 m sec"1. 
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Figure 2-11: (a): Upper layer zonal mean acceleration, ^-. (c): Upper layer north- 
ward potential vorticity flux, W[cf[. (e): Upper layer residual meridional circulation, 
vi- (b)i (d) and (f): same for the lower layer. Parameters: ux = 1, u2 = 0.2, ß = 
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Figure 2-12: (a): Upper layer zonal mean acceleration, ^-. (c): Upper layer north- 
ward potential vorticity flux, W0i- Parameters: Mi = 1, u2 = 0.99, ß = 4.15, 7 = 
10.18, S = 0.25, U = 0.8 m sec"1. 

Figure 2-10a shows mean zonal accelerations, ^ = — 2kCiOiye
2kCit, for the 

case when the amplitudes of the upper and lower layer basic velocities are 1.0 and 

0.0 respectively. Clearly, the most unstable linear wave has a "diffusive" effect on 

the upper layer mean flow; it broadens the flow by decreasing its zonal velocity in 

the middle of the domain and increasing it on the flanks of the jet. In the lower 

layer, the linearly growing wave tends to induce an eastward jet in the middle of the 

domain surrounded by weak westward flows on the north and the south. Notice that 

the amplitude of the lower layer zonal mean acceleration is an order of magnitude 

smaller than the amplitude in the upper layer. 

This contrasts with the mean zonal accelerations for stronger barotropic flows. 

For both u2 = 0.2 (Figure 2-1 la) and u2 = 0.99 (Figure 2-12 a), eddies have purely 

diffusive effect on the mean flow in both layers. There is no tendency for recirculations 

in these cases. 
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As Equation (2.21) shows, the mean zonal acceleration is defined by the inter- 

play between the residual meridional circulation and the northward eddy potential 

vorticity fluxes. When u2 = 0, they have opposite impact on the mean flow in the cen- 

ter of the jet; v'q tends to decelerate the mean flow in the upper layer and accelerate 

it in the lower layer, whereas v* tends to decrease the isopycnal slope, and therefore 

it is northward (accelerating the mean flow) in the upper layer and southward (decel- 

erating the mean flow) in the lower layer. However, the dominant contribution comes 

from the eddy potential vorticity fluxes. On the flanks of the jet though, both vü[ 

and v* tend to induce an eastward flow in the upper layer, so that they both have 

diffusive effect of the mean flow. In the lower layer, their role is different: it is only 

due to the residual meridional circulation that there is a tendency for westward flows 

on the flanks of the jet in the lower layer. As the amplitude of the lower layer nondi- 

mensional basic velocity increases, the slope of the isopycnal diminishes. The latter 

leads to a substantial decrease in the strength of the residual meridional circulation, 

so that it cannot dominate the eddy potential vorticity fluxes. Therefore, there is no 

tendency for the formation of recirculations in the lower layer. 

For strongly barotropic basic flows, the residual meridional circulation becomes 

negligible and the eddy potential vorticity fluxes have a purely diffusive effect on the 

mean flow during the stage of linear growth. 

2.2.7    Relevance to Fully Nonlinear Calculations 

As will be described in section 2.3, the upper layer mean zonal flow decreases its am- 

plitude and becomes broader during the first two months of the nonlinear spin down 

of an unstable jet. Weak westward recirculations develop in the lower layer. During 

the next 28 months of integration, the jet sharpens again, increases its amplitude and 

develops westward recirculations in both layers. 

A set of linear stability analysis of broader initial basic flows indicates the 

tendency for stronger recirculations when the basic flow is strongly baroclinic. Figure 
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Figure 2-13: (a): Upper layer zonal mean acceleration, ^-. (c): Upper layer north- 
ward potential vorticity flux, W[qi. (e): Upper layer residual meridional circulation, 
v{. (b), (d) and (f): same for the lower layer. Parameters: «i = 1, w2 — 0, ß = 
3.32, 7 = 10.18, 6 = 0.25, w = 5. 
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2-13 shows the results of eddy-mean flow interaction for the jet of 160 km width. No- 

tice that eddy potential vorticity fluxes act to decelerate the flow in the upper layer 

and to accelerate the flow in the lower layer. The residual meridional circulation is 

responsible for diffusing the jet in the upper layer and for inducing the westward 

retardation in the lower layer. In contrast with a thinner (100 km wide) jet, the am- 

plitudes of mean zonal accelerations are of the same order of magnitude in both layers. 

In strongly barotropic flows, the tendency for westward recirculations is absent. As 

we increase the width of the jet, the flow stabilizes. 

To see if the linear mean-flow interaction alone could be responsible for the for- 

mation of the recirculations we used an eddy-mean flow interaction model, developed 

by Flierl (personal communication). The model equations are: 

Qil-   
-~  =  (-lyFiX + v'a, (2.24) 

dl'i     - dq'i       ,däi 

d2       
(df~Fl~F^x = ^i-^2, (2.26) 

where ü and q are mean zonal geostrophic velocity vector and mean potential vortic- 

ity, (u , v )T and q are perturbation geostrophic velocity and perturbation potential 

vorticity, x is residual meridional circulation and % = 1, 2 is layer index. 

The model was applied for a basic flow of the form «;(y) = AiCOsh2(y) and 

converged only for strongly baroclinic initial basic flows; the procedure was divergent 

for strongly barotropic flows. The resulting basic flow had well developed westward 

flows. Thus, eddy-mean flow interactions were sufficient to explain the development 

of recirculations in strongly baroclinic cases. 

This approach does not work for barotropic flows, since strongly nonlinear 

regimes allowing for both eddy-mean flow and eddy-eddy interactions are required 

for recirculation development. 
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Figure 2-14: Eddy - mean flow partition of total energy vs dimensional time. The 
dark-shaded area indicates the mean flow energy part, the white area indicates the 
eddy energy part. Parameters: u\ = 1, u2 = 0, ß = 4.15, 7 = 10.18, 5 = 0.25, U = 
0.8 m sec-1. 

2.3    Nonlinear Analysis of a Two-Layer Model 

2.3.1    The Flow Evolution 

In all the numerical experiments, flow evolution goes through two separate stages. 

During the first stage, the eddy energy grows linearly at the expense of the mean 

flow energy (Figure 2-14). In the streamfunction field (Figure 2-15), this stage corre- 

sponds to the development of instabilities, to the growth of meanders and, in strongly 

barotropic cases, to ring formation. The second stage begins when the eddy energy 

reaches its maximum. Eddies, radiated away from the jet, start releasing energy back 

to the mean flow thus restructuring it. The equilibrated flow has a wider and weaker 

eastward jet surrounded by westward flows to the north and south. 

Total integration time of the model is equivalent to 30 months.   Total net 

transport is constant over time (Figure 2-16). Both integrated eastward and westward 
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Figure 2-15: Contours of instantaneous upper layer stream function after 10 days (a), 
66 days (b), 4.5 months (c) and 30 months (d). Same for the lower layer: (e)-(f)! 
Parameters: «i = 1, u2 - 0, ß = 4.15, 7 = 10.18, 6 = 0.25, U = 0.8 m seer1. 
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Figure 2-16: Dimensional total net (solid), eastward (dash-dot) and westward (dash) 
transports as functions of dimensional time. Parameters: ux = 1, u2 = 0, ß = 
4.15, 7 = 10.18, 5 = 0.25, U = 0.8 m sec"1. 
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Figure 2-17: Total (solid), potential (dash), upper layer kinetic (dash-dot) and lower 
layer kinetic (dot) energy. Parameters: «i = 1, u2 = 0, ß = 4.15, 7 = 10.18, 6 = 
0.25, U = 0.8 msec"1. 
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15 20 
TIME (MONTHS) 

Figure 2-18: Total enstrophy vs dimensional time. Parameters: ux = 1, u2 = 0, ß = 
4.15, 7 = 10.18, 6 = 0.25, [/ = 0.8m sec"1. 

transports increase linearly for the first 7 months, saturating completely after 15 

months. 

Since the model has two sponge layers and a weak numerical filter, total energy 

slowly decreases with time (Figure 2-17). The maximum decay corresponds to the 

first 5 months of model integration, when intensely growing eddies radiate away from 

the jet and enter the sponge layers. Once eddies start releasing energy back to the 

mean flow, the energy decay diminishes substantially. 

Time fluctuations of total momentum are less than 0.005% of the total initial 

field. Total enstrophy decreases with time by about 5% (Figure 2-18), with maximum 

decay during the stage of eddy energy growth. 

2.3.2    The Equilibrated Jet Structure 

This sections discusses the differences in the equilibrated jet structures for baroclinic 

and barotropic initial basic flows. The initial basic velocity is chosen such that ui = 1 
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Figure 2-19:   Upper (solid) and lower (dash) layer mean zonal velocity, Ui(y) = 
SZV Ui(x, y)dx, * = 1,2, at t=0 (a), 28 days (b), 47 days (c), 66 days (d), 3 months 

2TT 

(e), 4 months (f), 6 months (g), 30 months (h).  Parameters: U\ = 1, u2 = 0, ß 
4.15, 7 = 10.18, 5 = 0.25, U = 0.8 m sec-1. 
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and u2 varies between zero and 0.99. In all the experiments, the initially unstable jet 

stabilizes, and its structure changes drastically with time. 

Figure 2-19 shows the time evolution of the mean zonal velocity for the case 

when initially there is no flow in the lower layer (a). In the first month (b), when 

eddies grow at the expense of the mean flow energy, the upper layer jet decreases its 

amplitude and slightly widens. In the lower layer, a weak eastward flow develops in 

the middle of the domain surrounded by two weak westward flows. Between 1.5 (c) 

and 2 months (d) of flow evolution, this lower layer structure strengthens, while the 

upper layer mean zonal velocity loses its well defined jet profile due to the still growing 

eddy field. After 6 months (g), eddies pump energy back to the mean flow, and the 

equilibrated flow (h) consists of a sharp baroclinic jet (with a nonzero amplitude in 

the lower layer) surrounded by barotropic westward flows on the north and south. 

Figure 2-20 shows the mean flow evolution for strongly barotropic flows. The process 

is similar for strongly barotropic basic flows (Figure 2-20). 

As the nondimensional lower layer velocity amplitude, u2, varies from zero to 

0.99, the final maximum of the mean dimensional zonal velocity decreases from 0.88 to 

0.53 m sec-1 in the upper layer and increases from 0.23 to 0.53 m sec"1 in the lower 

layer (Figure 2-21a). Interestingly, when u2 = 0, the maximum final upper layer 

velocity is larger than the maximum initial upper layer velocity. The dimensional 

width of the upper layer jet increases monotonically from 180 to 220 km. In the lower 

layer, it diminishes from 140 to 120 km as u2 increases from 0.0 to 0.5, and then grows 

to 210 km for u2 > 0.5. 

2.3.3    Potential Vorticity Mixing 

The equilibration of an unstable jet can be viewed through the process of potential 

vorticity mixing that acts to remove a negative potential vorticity gradients. Such a 

process differs for baroclinic versus barotropic jets.  In the following discussion, we 
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Figure 2-20: Upper layer mean zonal velocity, U\(y) = ^ J^Ui(x,y)dx, at t=0 (a), 
18 days (b), 47 days (c), 66 days (d), 9 months (e), 30 months (f). Parameters: 
«i = 1, u2 = 0.99, ß = 4.15, 7 = 10.18, 5 = 0.25, 17 = 0.8 m sec-1. 
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Figure 2-21: (a): Maximum of dimensional velocity, U uu ( in m sec-1) of the equi- 
librated jet in the upper (solid) and lower (dash) layers versus the nondimensional 
amplitude of the initial lower layer velocity, u2. Parameters: i*i = 1, ß = 4.15, 7 = 
10.18, S = 0.25, U = 0.8 m sec-1, (b): Dimensional width (in km) of the equilibrated 
jet in the upper (solid) and lower (dash) layer versus the nondimensional amplitude 
of the initial lower layer velocity, u2. 

contrast two examples: (uuu2) = (1,0) which corresponds to a strongly baroclinic 

jet, and (ui,u2) = (1.0,0,99) which corresponds to a strongly barotropic jet. 

For u2 = 0, both the upper and the lower layer potential vorticity fields have 

regions of negative gradient (Figure 2-22a). After equilibration, the lower layer poten- 

tial vorticity is homogenized in a wide zone under the axis of the jet (Figure 2-22b). 

Hence, the flow is only marginally stable there. Zero g-gradient indicates that there 

is intense mixing in the lower layer in the center of the domain. Similar homoge- 

nization of lower layer potential vorticity was observed in a two-layer /3-plane model 

of Pedlosky [28], where he studied weakly nonlinear equilibration of Phillips' model 

with weak dissipation. 

In the rest of the lower layer domain, there is a weak positive potential vor- 

ticity gradient which corresponds to planetary ß. In the upper layer, the region of 

the eastward jet with large and positive ^-gradient is surrounded on the north and 
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Figure 2-22:    Initial (a)  and final  (b)  mean zonal potential vorticity,  qj(y)   = 
^Jlvqi(x,y)dx, i = 1,2, for the upper (solid) and lower (dash) layer. Parameters: 
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Figure 2-23: Initial (a) and final (b) mean zonal potential vorticity for the upper layer, 
q^(y) = ^J^qi(x,y)dx. Parameters: ux = 1, u2 = 0.99, ß = 4.15, 7 = 10.18, S = 
0.25, U = 0.8 msec-1. 
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Figure 2-24: (a): Contours of the upper layer potential vorticity at t = 47 days, (b): 
Same for the lower layer. Parameters: ui — 1, u2 = 0, ß = 4.15, 7 = 10.18, 8 = 
0.25, U = 0.8 msec"1. 
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Figure 2-25: (a): Contours of the upper layer potential vorticity at t = 66 days, (b): 
Same for the lower layer. Parameters: «i = 1, u2 = 0, ß = 4.15, 7 = 10.18, S = 
0.25, U = 0.8 msec-1. 
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Figure 2-26: (a): Contours of the upper layer potential vorticity at t = 4 months, 
(b): Same for the lower layer. Parameters: u\ = 1, «2 = 0, ß = 4.15, 7 = 10.18, 8 = 
0.25, U = 0.8 msec"1. 
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Figure 2-27: (a): Contours of the upper layer potential vorticity at t = 30 months, 
(b): Same for the lower layer. Parameters: iti = 1, ti2 = 0, ß = 4.15, 7 = 10.18, 5 = 
0.25, t/ = 0.8m sec-1. 
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Figure 2-28: Contours of the upper layer potential vorticity at t = 18 days. Parame- 
ters: Mi = 1, «2 = 0.99, ß = 4.15, 7 = 10.18, ö = 0.25, U = 0.8 m sec"1. 
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Figure 2-29: Contours of the upper layer potential vorticity at t = 47 days. Parame- 
ters: ux = 1, «a = 0.99, ß = 4.15, 7 = 10.18, ö = 0.25, U = 0.8 m sec-1. 
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Figure 2-30: Contours of the upper layer potential vorticity at t = 3 months. Param- 
eters: ui = 1, u2 = 0.99, ß = 4.15, 7 = 10.18, 6 = 0.25, U = 0.8m sec-1. 
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Figure 2-31: Contours of the upper layer potential vorticity at t = 30 months. Pa- 
rameters: «i = 1, u2 = 0.99, ß = 4.15, 7 = 10.18, S = 0.25, U = 0.8 m sec"1. 
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the south by the zones of westward flows with homogenized potential vorticity. Inter- 

estingly, the value of the positive q—gradient decreased only by 10% during the flow 

evolution, which indicates very weak mixing across the upper layer potential vorticity 

front and intense mixing on the flanks of the jet. 

For the case of a strongly barotropic jet, (ui,u2) = (1,0.99), the regions of 

initial negative potential vorticity gradient (Figure 2-23a) are removed after equili- 

bration (Figure 2-23b). The final q—structure consists of a zone of positive potential 

vorticity gradient on the axis of the jet with the regions of homogenized potential vor- 

ticity north and south of it. In contrast with a strongly baroclinic case, the value of 

positive (/-gradient decreased by 45% , which suggests that in a strongly barotropic 

flow, mixing occurred not only on the flanks of the jet, but also across the potential 

vorticity front on the axis of the jet. 

The differences in potential vorticity mixing are illustrated in Figures 2-24-2- 

31. For a strongly baroclinic case, («i, u2) = (1, 0), a large positive potential vorticity 

gradient in the upper layer jet appears as an efficient barrier to mixing; even though 

meanders grow to large amplitudes, the front stays quite coherent and breaks only in 

a few places giving birth to rings (Figures 2-24, 2-25). Therefore, in the upper layer, 

mixing occurs on the sides of the jet; potential vorticity filaments get strained and 

stirred on each side of a meander. Most of q—mixing occurs in the lower layer, where 

the initial potential vorticity gradient is negative. After 4 months of integration (Fig- 

ure 2-26), the amplitudes of the upper layer meanders decrease, and straining of the 

potential vorticity contours in the lower layer continues. Both layers are dominated 

by heton-like structures. The equilibrated field (Figure 2-27) is characterized by ho- 

mogenized lower layer potential vorticity under the axis of the jet and by a strong 

q—front in the upper layer. 

In the strongly barotropic case (u2 = 0.99), the meanders start breaking long 

before they propagate across the domain (Figure 2-28). After 1 month of integration 

(Figure 2-29), there is an intense potential vorticity mixing across the front and on 
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its sides. The front becomes completely broken after 3 months (Figure 2-30). Even 

though initially there is a strong potential vorticity gradient in the middle of the do- 

main, which should serve as a barrier to mixing, the eddy field is so intense and violent 

that it eventually breaks the front. This contrasts with a strongly baroclinic case de- 

scribed earlier. The equilibrated potential vorticity field (Figures 2-31) has a positive 

gradient, but it is much weaker than the initial one. Two regions of homogenized q 

are located north and south of the front. 

Energy and Momentum Constraints 

During a free spin down, why does the flow equilibrate itself by developing the recircu- 

lations? The equilibration process, which we view as potential vorticity mixing, must 

obey the conservation of both momentum and energy. One should remember that 

although the model is unforced, the conservation is approximate due to the presence 

of a numerical filter and the sponge layers. 

initial velocity 

10 

final velocity 

Figure 2-32: A schematic, illustrating a thought experiment. Initial velocity profile 
(left) and equilibrated velocity profile (right). 
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To illustrate the importance of the above constraints, let us consider the fol- 

lowing thought experiment. Suppose that an initial barotropically unstable "point" 

eastward jet has a velocity amplitude of 10 units and the kinetic energy of ^ units 

(Figure 2-32, left). Due to potential vorticity mixing, the equilibrated flow can be 

represented by a broadened jet with velocity amplitudes {02,01,00,01,02}, where 

a2 < 01 < a0 (Figure 2-32, right). Note that we make no assumptions about the sign 

of the amplitude components, a2. The conservation of momentum and energy imply: 

(2.27) 
o0 + 2(ai + a2) = 10, 

a2, + 2(of + a\) = 102. 

Figure 2-33 shows the solutions of the above equations, when the center amplitude, 

a0, is considered as an independent parameter varying between 0 and 10. This simple 

experiment shows that the equilibrated jet structure must have negative velocity 

amplitudes, a2, on the flanks of the equilibrated barotropic jet in order to conserve 

both energy and momentum. 

Figure 2-33: The solutions of system of equations (2.27) conserving momentum and 
energy. The velocity amplitudes ax (solid line) and a2 (dashed line) are shown as 
functions of central velocity amplitude, a0. 
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Figure 2-34: Zonally averaged relative vorticity, S&iyy, (solid), stretching term, F(l) * 
(\I>2 — *i), (dash) and planetary potential vorticity, ßy, (dash-dot) in the upper layer 
at the initial (a) and final (b) time. Similar terms for the lower layer at the initial (c) 
and final (d) time. Parameters: Ui = 1, «2 = 0, ß = 4.15, 7 = 10.18, 5 = 0.25, U = 
0.8 m sec-1. 
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Figure 2-35: Zonally averaged relative vorticity, tylyy, (solid), stretching term, F(l) * 
(#2 - *i), (dash) and planetary potential vorticity, ßy, (dash-dot) in the upper layer 
at the initial (a) and final (b) time. Parameters: Ui = 1, u2 = 0 99 ß = 4 15 7 = 
10.18, £ = 0.25, [7 = 0.8 msec"1. 
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Figure 2-36: Final iß  -  q dependence for the upper layer (a) and lower layer (b) 
when Mi = l, u2 = 0, ß = 4.15, 7 = 10.18, 5 = 0.25, U = 0.8 m sec"1. 

Potential Vorticity Components 

The changes in the individual components of potential vorticity fields are presented 

in Figures 2-34 and 2-35. In strongly baroclinic cases, although the stretching term, 

(—iyFi(ipi —1P2),  i = 1)2, varies somewhat, most of the changes come from the 

zonal relative vorticity, ipiyy, in the center of the domain. Therefore, changes in 

the meridional structure of the flow are mostly responsible for removing the negative 

values of potential vorticity gradient. In the recirculation regions, the relative vorticity 

term is zero and the stretching term is constant in y. 

tp — q Relationship for Equilibrated Jet 

Figure 2-36a shows three different regions of final ip — q relationship in the upper layer 

for the case of strongly baroclinic initial basic flow. The axis of the jet corresponds 

to the linear and negative ip — q dependence. In the zones of recirculations, where 

the potential vorticity gradient is zero, the iß — q function is horizontal. The third 

zone, where ip — q is positive and linear, is in the area to the north and south of the 
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Figure 2-37: Final ip - q dependence for the upper layer (a) and lower layer (b) 
when «! = 1, U2 = 0.99, ß = 4.15, 7 = 10.18, S = 0.25, U = 0.8 m sec"1. 

westward flows. Here, the potential vorticity gradient is equal to ß. In the lower layer 

(Figure 2-36b), both in the region of eastward jet and westward recirculations, the 

tp-q dependence is horizontal. For strongly barotropic initial basic flow (Figure 2- 

37), the final ip-q relationship is similar to that of the upper layer strongly baroclinic 

case. 

2.3.4    Relative Strength of the Recirculations 

Dependence on Baroclinic Structure 

To understand how the strength of the recirculations depends on the baroclinic struc- 

ture of the jet for a given /?, we conducted a series of experiments in which the 

amplitude of the nondimensional upper layer basic velocity was fixed at 1 and the 

amplitude of the nondimensional lower layer basic velocity was varied between 0 and 

0.99. 

Figure 2-38 shows total dimensional net, eastward and westward transports for 

the equilibrated jet as functions of the lower layer nondimensional velocity amplitude, 
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Figure 2-38: Total net (o), eastward (*) and westward (D) transports (in Sv) for the 
equilibrated jet as functions of the amplitude of the nondimensional lower layer basic 
velocity, u2. The upper layer nondimensional velocity amplitude, ui, was fixed at 1.0. 
Parameters: ß — 4.15, 7 = 10.18, 5 = 0.25, U = 0.8 m sec-1. Dashed lines show the 
observed transport in the Gulf Stream ( 150 Sv ) and in the recirculations (-80 Sv ). 

u2, for ß = 4.15. Both eastward and westward transports were not monotonic. For 

u2 < 0.3, the eastward transport decreased from 250 Sv to 200 Sv, whereas the 

westward transport diminished from 180 Sv to 30 Sv. For u2 > 0.3, they both 

increased to 500 Sv and 110 Sv correspondingly. Note that the observed transports 

in the Gulf Stream and its recirculations correspond to 150 Sv and 80 Sv {Hogg [12]). 

Similar non-monotonic dependence of the recirculations strength on the lower 

layer nondimensional velocity amplitude was observed for three different values of 

nondimensional ß (Figure 2-39) corresponding to three different velocity scales: U = 

0.6,0.8 and 1.0 m sec-1. The minimum in the strength of the recirculations was 

attained at u2 = 0.3 for ß = 4.15 and ß = 5.53 and at u2 = 0.5 for ß = 3.32. 

Therefore, the recirculations were strongest for strongly baroclinic initial basic flows, 

weakest for flows with intermediate baroclinicity and of medium strength for strongly 

barotropic flows. 
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Figure 2-39: The relative strength of the recirculations, defined by the ratio of total 
westward to eastward transports, as a function of the lower layer nondimensional 
velocity amplitude, u2. Parameters: m = 1, 7 = 10.18, 6 = 0.25. The dashed, solid 
and dashed-dotted lines correspond to ß = 3.32, U = 1 m sec-1, /3 = 4.15, U = 0.8 
m sec-1 and ß = 5.53, U = 0.6 m sec-1 respectively. 

0.6 

0.55 

(a) 

0.5             J 
0.45   \         J    ■ 

„0.4 
07 

IS 
 ; \A  

-.0.35 
5  /  
5 J 

0.3  ;-•/;  
0.25 
 ; ;■/•;  

0.2  ^ JA  
0.15 

m  i              1               i              i 

(tl) 

300 

250 

sT  200 (O 

150 

0 0.01       0.02      0.03      0.04      0.05 
(ut-u2V(F1u2+F2u1) 

0.01       0.02      0.03      0.04      0 05 
<VU2</<F,VF2U1> 

Figure 2-40: (a): The ratio of the total westward to the total eastward transport 
as a function of a baroclinic parameter, Fl%;%Mi. (b): The dimensional total net 
(solid line), westward (dashed-dotted line) and eastward transports (dashed line) as 
functions of a baroclinic parameter. Parameters: ß = 4.15, 7 = 10.18, 5 = 0.25. 
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Figure 2-41: Maximum linear growth rate as a function of a baroclinic parameter, 
"'Tff   ■ Parameters: ß = 4.15, 72 = 103.75, 8 = 0.25. 

However, the above experiments differed in their total energy levels. To see if 

the existence of the local minimum in the recirculation strength could be related to 

changes in the total energy level or in the partition of kinetic to potential energies, 

a set of experiments was conducted where the total energy was fixed and only the 

baroclinicity of the basic flow was changed. The latter was defined as the ratio of 

the basic baroclinic velocity, u\ — u2, to the basic barotropic velocity, F\u2 4- F2U\. 

Figure 2-40a shows the resulting relative strength of the recirculations. There is 

still a minimum reached at the value of the baroclinic parameter that corresponds to 

«1 = 1.0 and u-2 = 0.3. The corresponding partition of kinetic to potential energies was 

a monotonic function of the baroclinic parameter. The total dimensional transport 

(Figure 2-40b) also indicates that minimum absolute value of the westward transport 

is attained at u\ = 1.0 and u2 — 0.3. 

Therefore, a non-monotonic behavior of the relative strength of the recircula- 

tions is not related to the total energy level or to the kinetic-potential energy partition. 

Instead, it is determined solely by the baroclinic structure of the initial basic flow. 

Linear stability analysis reported in section 2.2.3 showed that the growth rate was a 
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non-monotonic function of the lower layer nondimensional velocity, u2, for a fixed ux 

and ß (Figure 2-6). The shape of the growth rate curves indicated the importance 

of a baroclinic mode when u2 was close to zero and of a barotropic mode when u2 

was close to ux. For the intermediate values of u2, the growth rate was minimum, and 

both modes had similar growths. Also, in the experiments with the fixed total energy 

level, maximum growth rate was a non-monotonic function of a baroclinic parameter, 

j$^Tx (Figure 2-41). 

Linear stability analysis also showed that recirculation development due to 

linear wave-mean flow interaction was possible only for strongly baroclinic flows. An 

eddy-mean flow interaction model applied to a strongly baroclinic basic flow produced 

recirculations in both layers. The same procedure applied to a strongly barotropic 

flow did not result in flow equilibration. Therefore, for strongly baroclinic basic 

flows, eddy-mean flow interaction alone can generate recirculations in both layers 

through residual meridional circulation. Thus, the results of the nonlinear calculations 

showing a decrease in the relative strength of the recirculations with an increase in 

u2 for strongly baroclinic jets are in agreement with the results of the linear stability 

analysis. 

On the other hand, recirculations developed in the process of a nonlinear equi- 

libration of a strongly barotropic flow. Clearly, nonlinear eddy-eddy and eddy-mean 

flow interactions were necessary for their generation. Therefore, the principle mech- 

anism leading the recirculation development is different in the case of strongly baro- 

clinic and strongly barotropic flows. 

In the present study, we did not perform a weakly-nonlinear analysis of the 

basic state flows. However, Flierl and Meacham (personal communication) showed 

that in a contour dynamical model of a two-layer cusp jet with three potential vorticity 

fronts in each layer, the coefficient in the amplitude equation changes sign for the 

intermediate values of the baroclinic parameter, indicating that the flow does not 

saturate. Therefore, equilibration requires a strongly nonlinear regime. Similarly, in 
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Figure 2-42: The ratio of the upper to the lower layer westward transports for the 
equilibrated jet, as a function of the lower layer nondimensional velocity amplitude, 
M2. Parameters: Wi = 1,7 = 10.18, 5 = 0.25. The dashed, solid and dashed-dotted 
lines correspond to ß = 3.32, U = 1 m sec-1, ß = 4.15, U = 0.8 m sec-1 and 
ß = 5.53, U = 0.6 m sec-1 respectively. 

a case of continuous potential vorticity gradient, a weakly-nonlinear analysis applied 

to basic state flows with intermediate baroclinicity might not necessarily give any 

insight into the equilibration process. 

Figure 2-42 presents the ratio of the upper to the lower layer westward trans- 

ports of the equilibrated jet, as a function of the lower layer nondimensional velocity 

amplitude, «2, for three different values of nondimensional ß. The ratio varied be- 

tween 0.15 and 0.24 with maximum values reached at the intermediate values of u2 

and minimum values attained when u2 = 0. Recalling that the layer depths were cho- 

sen as 1 km and 4 km suggests that lower layer recirculations were always stronger 

than upper layer recirculations. 

Dependence on ß 

The relative strength of the recirculations, defined as the ratio of the total westward 

to the total eastward transport of the equilibrated jet, increased with a decrease in 

the value of a nondimensional /^-parameter (Figure 2-39). This result is in agreement 
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Q(Y) 

Figure 2-43: Schematic showing mean potential vorticity for two values of nondimen- 
sional ß : ßx > ß2. Light shaded area indicates mixed q for ß2, dark shaded area 
indicates mixed q for ßi. 

with the findings by Jayne et al. [18], who studied the statistically steady state of 

the eastward jet and its recirculations driven by the unstable jet inflow on the eastern 

boundary and by the stable jet outflow though the western boundary. 

The increase in the recirculation strength with a decrease in nondimensional ß 

can be easily interpreted by viewing the equilibration process as the one of potential 

vorticity mixing. Figure 2-43 shows schematic potential vorticity profiles for two 

different values of nondimensional ß : ßx > ß2. After equilibration, the regions of 

negative potential vorticity gradient are removed. Recirculations appearing north 

and south of the jet correspond to the regions with homogenized potential vorticity. 

Let us assume here that total enstrophy is conserved and that the potential vorticity 

gradient on the axis of the jet does not change during equilibration. Then, the 

following areas must be equal (see Figure): A\ = A\ and A\ = A\. Therefore, the size 

of the homogenized region is smaller for ß = ßu which indicates smaller recirculations. 

Hence, conservation of enstrophy and symmetry of the flow imply that the region 

of homogenized potential vorticity for ßx will be smaller than that for ß2. In the 

present model, enstrophy is not exactly conserved due to the presence of weak sponge 
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layers and a numerical filter; it decreases by less than 5% during spin down. Also, 

the potential vorticity gradient corresponding to the jet axis also changes depending 

on the baroclinicity of the basic flow. However, the above argument illustrates the 

importance of potential vorticity mixing and approximate enstrophy conservation as 

constraints on the recirculation size. 

2.4    Results for the Reduced-Gravity Model 

To understand the impact of the barotropic instability on the mean flow and its 

possible role in generating the recirculations, a linear stability analysis was performed 

in a framework of a reduced-gravity model. The latter can be considered as a limiting 

case of a two layer model, described in section 2.1, when the depth of the lower layer 

is infinite, i.e. S = Di/D2 = 0. The upper layer is dynamically active and is governed 

by the following equation: 

^ + J{*,q)  +   J(<j>,Q)  = 0, (2.28) 

where \&(y) = - jy U(y')dy' and Q(y) = ßy - 72\Er + ^-f are the basic flow stream- 

function and potential vorticity fields, <j> = <j){x, y, t) and q = —72</> + 4-f are the per- 

turbation streamfunction and potential vorticity fields. The model is defined by the 

following nondimensional parameters: the inverse deformation radius, 7 = L/Ldef, 

and nondimensional beta-parameter, ß = ßdimL2/U. Basic state velocity is given by 

Equation (2.5). 

Although the structure of the basic mode is baroclinic, only the mechanism of 

barotropic instability is present in the reduced-gravity model. Again, we look for a 

zonally periodic solution of the form 

(ß(x,y,t)= Real(<%) <.*<*-*>), (2.29) 
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Figure 2-44: The maximum growth rate, kcu (solid line) and the corresponding real 
part of the phase speed, cr, (denoted by circles) as functions of a horizontal wave 
number, k, in the reduced-gravity model for 7 = 9.11, Ldef = 44 km (a), 7 = 
6.27, Ldef = 65 km (b), 7 = 4.07, Ldef = 100 km (c) and 7 = 0, Ldef = 00 (d). 
Parameters: ß = 4.15, w = 8.14. 
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Figure 2-45: Zonal mean acceleration, ||, (a), northward potential vorticity flux, vq, 
(b) and residual meridional circulation, v*, (c). Parameters of the reduced-gravity 
model: «i = 1, ß = 4.15, 7 = 9.11, w = 8.14. 
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Figure 2-46: Zonal mean acceleration, §f, in a reduced-gravity model. Parameters: 
ui = 1, ß = 4.15, 7 = 0, w = 8.14. 

where k is a horizontal wave number, and c is the phase speed of the disturbance. 

Then the linearized equation of motion is given by 

ay1 dy 

subject to no-normal-flow boundary conditions 

0, (2.30) 

$ (y = IT)  =  $ (y = -IT) 0. (2.31) 

As in a two layer model, the above problem is reduced to the generalized eigenvalue 

problem: 

A$ = cß$, (2.32) 

where matrices A and B are given by (2.12) and (2.13). 

Figure 2-44 shows the maximum growth rates and the real parts of the phase 

speed for four values of nondimensional 7, which correspond to the following values 

of the deformation radius: 44 km, 65 km, 100 km and infinite. There is substantial 

difference in the maximum growth rates.   When the deformation radius is 44 km 
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the flow is only weakly unstable, and there is long wave cutoff. As the deformation 

radius decreases, the long waves become weakly unstable. The most unstable wave 

increases from 256 to 285 km with a decrease in 7. The corresponding real parts of 

the phase speed are similar for various 7. As the deformation radius increases, short 

waves become more unstable. 

The TEM analysis shows the diffusion and the rectification of the flow in the 

middle of the domain and the development of westward flows on the flanks of the 

jet when Ldef = 44 km (Figure 2-45(a)). The diffusion of the jet is due to the eddy 

potential vorticity fluxes (b), whereas westward rectification is due to the residual 

meridional circulation (c). In the case of an infinite deformation radius, Ldef = 00, 

the reduced-gravity model becomes purely barotropic. Similar to a two layer case, the 

TEM analysis does not show any tendency for the formation of westward rectifications 

(Figure 2-46); the eddy potential vorticity fluxes have a purely diffusive effect on the 

mean flow. 

The numerical experiments with the fully nonlinear reduced-gravity model 

show that the relative strength of the recirculations, defined by the ratio of the total 

westward to the total eastward transports, is a monotonically decreasing function 

of a nondimensional inverse deformation radius, 7, (Figure 2-47). When 7 = 0, 

which corresponds to an infinite dimensional deformation radius, the total westward 

transport is 20% of the total eastward transport, which compares well with the results 

of the two-layer model for a strongly barotropic basic flow. When the deformation 

radius was chosen to be 44 km (7 = 9.11), the strength of the recirculations was 

negligible. 

Therefore, in the case of the reduced-gravity model, the tendency for the for- 

mation of the recirculations during the stage of linear growth is misleading in that it 

predicts the development of recirculations for large 7 and absence of the recirculations 

for small 7. The initial basic flow is only slightly supercritical for large 7, and therefore 

there are no strongly nonlinear wave-mean and wave-wave interactions which would 
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Figure 2-47: The ratio of westward to eastward transport in the equilibrated jet vs 
nondimensional 7 in a reduced-gravity model. Parameters: ux = 1 ß = 4 15 w = 
8.14. '    . 

be necessary for the development of the recirculations by barotropic instability. In 

the case of large 7, the basic flow is strongly supercritical, and hence the nonlinear 

eddy field is strong enough to produce westward rectifications. 

2.5    Conclusions 

The formation of westward recirculations is studied in the model of a free nonlinear 

spin down of zonally symmetric, quasi-geostrophic, unstable jets. The model (Flierl, 

personal communication) has weak sponge layers and a numerical filter, which imply 

only weak dissipation of energy and enstrophy. 

The recirculations are robust features of a two-layer model, which includes 

the mechanisms of both baroclinic and barotropic instabilities. The relative strength 

of the recirculations, defined as the ratio of the total westward to the total eastward 

transport, is a function of the nondimensional parameters of the model. It decreases as 

the value of nondimensional ß increases. This decrease in the recirculation strengths 
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is due to a decrease in the zone of homogenized potential vorticity, which in turn is 

due to (approximate) enstrophy conservation. 

When ß, 7 and total energy level are fixed, the strength of the recirculations is 

maximum for strongly baroclinic flows and minimum for intermediate values of a baro- 

clinic parameter, F"KUpu , where ut is i-th layer nondimensional velocity amplitude 

and Ft is i-th layer Froude number. In strongly baroclinic cases, eddies marginally 

equilibrate the flow and create a wide zone of homogenized potential vorticity in the 

lower layer. This result is in agreement with the study of a weakly-nonlinear equili- 

bration of Phillips' model with weak dissipation (Pedlosky [28]). In the upper layer, a 

positive potential vorticity gradient on the axis of the jet decreases by less than 10%, 

thus appearing as an efficient barrier to mixing. Most vigorous mixing occurs on the 

edges of the jet in the upper layer and under the axis of the jet in the lower layer. 

As the jet becomes more barotropic, a positive potential vorticity gradient 

develops on the axis of the jet in the lower layer, reflecting a more stable flow structure. 

In strongly barotropic jets, there is vigorous mixing both across the positive potential 

vorticity gradient and on the edges of the jet, leading to a decrease on a values of the 

upper layer potential vorticity gradient on the axis of the jet by more than 45%. 

The linear stability analysis applied to a two-layer jets shows that in strongly 

baroclinic cases, the lower layer recirculations are driven by the eddy heat fluxes 

through the residual meridional circulation. In the upper layer, the divergence of eddy 

potential vorticity fluxes tends to simply "diffuse" the jet during the stage of linear 

growth. Nonlinear eddy-eddy and eddy-mean flow interactions are further important 

in inducing the upper layer recirculations. The linear analysis shows that the strength 

of the residual meridional circulations increases with an increase in the width of basic 

flow. That is why a "mean flow" model (Flierl, personal communication) successfully 

reproduces recirculations when applied to strongly baroclinic basic flows. 

For strongly barotropic two-layer basic flows, which are strongly supercritical, 

the linear eddy potential vorticity fluxes tend to diffuse the jet in both layers without 
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any tendency for the formation of westward flows on the flanks. As the basic flow 

becomes wider, it stabilizes. Therefore, strongly nonlinear regimes, which allow for 

both eddy-mean flow and eddy-eddy interactions, are required for the emergence of 

recirculations for strongly barotropic basic flows. 

Thus, although the recirculations develop in a two-layer model for barotropic 

and baroclinic flows, processes leading to their generation are different. In baro- 

clinic case, eddy-mean flow interaction is powerful enough to drive recirculations. In 

barotropic cases, strongly nonlinear eddy-mean flow and eddy-eddy interactions are 

required for the recirculations development. The existence of two different mecha- 

nisms is responsible for a non-monotonic dependence of the recirculation strength on 

the baroclinic parameter on nonlinear experiments. 

In the reduced-gravity model, which has just the mechanism of barotropic 

instability, recirculations form as a result of a nonlinear spin down of an unstable basic 

flow only for the case of an infinite dimensional deformation radius. For deformation 

radii smaller than 65 km, the total westward transport is less than 5% of the total 

eastward transport. 

The results of the linear stability analysis are misleading since they imply a 

weak tendency for the formation of the recirculations for small dimensional deforma- 

tion radii and the absence of the recirculations for an infinite dimensional deformation 

radius. The linear stability analysis is not helpful since the basic flow is only slightly 

supercritical for large 7, implying a weak eddy field. 
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Chapter 3 

Colliding Jets Model Formulation 

3.1    Introduction 

In the following Chapters, we investigate the problem of low frequency variability and 

associated multiple dynamical regimes resulting from the internal dynamics of an un- 

stable quasi-geostrophic jet and its recirculations. Particularly, we raise the following 

questions: Are low frequency variability and multiple dynamical regimes an inherent 

part of the internal dynamics of a quasi-geostrophic jet and its recirculations? Are 

there any differences between barotropic and baroclinic instabilities as mechanisms 

affecting low frequency variability? Which dynamical regimes are associated with 

low frequency variability and which precesses are responsible for transitions between 

them? Are there differences between low frequency variability and multiple dynami- 

cal regimes in the globally forced (wind-driven) models and boundary-forced models, 

which we use in a present study? 

To study the above questions, we designed regional reduced-gravity and two 

layer quasi-geostrophic models that are forced by prescribed inflow and outflow bound- 

ary conditions; dissipation is the only active forcing term in the equations of motion. 

The open boundaries represent the border between the "outside" region of slow Sver- 

drup interior, where the wind forcing plays a crucial role, and the "interior" region 
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of the western boundary current, its eastward extension and its recirculations, where 

the internal dynamics of the jet is dominant. In our model, the role of wind-forcing is 

limited to defining a particular distribution of potential vorticity and streamfunction 

along the inflow and outflow boundaries, a distribution that is fixed in time. Notice 

that, in the wind forced models which exhibit multiple dynamical regimes, the in- 

flow into the jet can change, since Sverdrup balance is not exact; such changes may 

influence the dynamical behavior. 

3.2    Model Formulation 

3.2.1    Governing Equations 

The numerical model is a discretized version of the time-dependent two-layer quasi- 

geostrophic potential vorticity equations on a ß - plane: 

-^r + J(tpi,qi)  = Vi + Si     infi, (3.1) 

subject to the boundary conditions: 

A = *it VVi = d,   VVi = Mi     in H. (3.2) 

Here, ip{ - ip{(x, y) is a quasi-geostrophic streamfunction, q{ - q^x, y) = V2ipi+ßy+ 

Fi(il>3-i-i>i) is potential vorticity, and i = 1, 2 is a layer index. The rectangular model 

domain is defined by ft U U, where Q is the set of all the internal points and fi is the 

set of all the boundary points. On the boundaries, the streamfunction, its Laplacian 

and the square of the Laplacian are prescribed as known functions *,, d and Mi. 

The dissipation is provided by biharmonic diffusion and by bottom or interfacial 

(in the case of the reduced-gravity formulation) friction, so that Vx = -,46VVi 

and Z>2 = -A2^
2ip2 - AV6^- In addition, the dissipation Si in the sponge layers, 

of which details are presented later, prevents part of the outgoing radiation from 

reflecting back onto the interior domain. 



3.2.2 Dimensional Scales 

The dimensional scales are chosen as follows. The horizontal length scale is L = 

2400 km, the advective velocity scale is U = 1 m sec-1, which implies an advective 

time scale T = L/U = 27.8 days. The layer thicknesses in the reference run are 

Di = 600 m and D2 = 4 km. The Coriolis parameter is /0 = 7.25 • 10-5 sec-1, its 

meridional gradient is ßdim = 1.97-10-11 m-1 sec-1. The baroclinic deformation radius 

is chosen as Ldej = 47 km. Reduced gravity is g = 0.02 m sec-2. The dimensional 

biharmonic diffusion coefficient, Afm, equals either 8-1010 m4 sec-1 or 8-108 m4 sec-1. 

The values of the dimensional bottom friction or interfacial friction, Af™, vary. 

3.2.3 Model Domain 

The model domain is a rectangular basin defined as 

Q.UQ = {(x,y) | xw <x <xe, ys<y <yn}, (3.3) 

where xe = —xw = Lx/2Ly, yn = — ys = 0.5. The dimensional west-east and south- 

north extents of the domain are Lx = 4667 km and Ly = 2400 km. The model has a 

uniform grid with 257 by 129 grid points, which implies a horizontal resolution of 18.5 

km. High resolution runs with 513 by 257 grid points and a corresponding horizontal 

resolution of Arr = 9.12 km and Ay = 9.38 km were performed to ensure that the 

model's behavior is robust. 

3.2.4 Nondimensional Parameters 

The model has the following nondimensional parameters: 

• the nondimensional beta, defined as the ratio of the advective time scale to the 

barotropic Rossby wave period: ß = ßdimL2/U; 
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• the inverse deformation radius, defined as the ratio of a horizontal length scale 

to the internal baroclinic deformation radius: 7 = y/Fi + F2 = L/Ldef, where 

the i-th. layer Froude number is given by Ft = 4-^-; 

• the depth ratio: 8 = Di/D2; 

• the ratio of the maximum of the lower layer inflow streamfunction, \&2, to the 

maximum of the upper layer inflow streamfunction, ^x : a = max($2)/max(*1), 

• the nondimensional interfacial or bottom friction coefficient, which is the ratio 

of the advective time scale to the frictional decay time scale: A2 = AfmL/U, 

• the nondimensional biharmonic diffusion coefficient, which is the ratio of the 

advective time scale to the biharmonic diffusion time scale: A = AfmL~3U~l. 

3.2.5    Forcing and Boundary Conditions 

The model is forced by the set of prescribed inflow and outflow boundary condi- 

tions. Such a forcing isolates baroclinic and barotropic instabilities as mechanisms 

responsible for low-frequency variability and multiple dynamical regimes. 

Two thin jets of equal strength enter the domain from the south and the north 

(Figure 3-1), flow along the closed western boundary, and collide in the middle of the 

domain, thereby creating an eastward jet. The latter propagates across the domain 

and leaves through the opened eastern boundary. The other two regions of inflow 

are located in the northern and southern parts of the eastern boundary, where the 

entering flow has weak westward zonal velocity. The geometry of the model allows for 

the interaction between the western boundary current and the recirculations generated 

by the instabilities of the eastward jet. 
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Figure 3-1: The geometry of the colliding jets model. 

The inflow and the outflow on the open boundaries are implemented using a 

given streamfunction field, which is kept fixed in time: 

0 for {(x, y)   |  x = xw, ys < y < yn} , 

igeast £or ux y\  I x = xe, ys < y < yn\ , 
U^y) = Ri{ v-v-vnj, (34) 

y south for {fay)    |   Xw<x< Xei  y = ys}, 

_y south    for ^fay)   l   Xw<x< Xe, y = yn}, 

V^(x,y)  =  Rt< 

for {(x, y)   |  x = xw, ys < y < yn} , 

for {(a;, y)   \  x = xe, ys < y < yn} , 

0 
dW tffeast 

Sj/CO     i 

ßLysouth       for ^ y)  |  Xw<x<xe,y = ys} , 

-ßk^!outh    for {{x,y)   |  xw < x < xe, y = yn} , 

(3.5) 

where k = 2,4, Ri = 1 and R-2 = a. The coefficient a varies between zero and 

one, thus allowing the creation of inflow/outflow conditions with different degrees of 

baroclinicity. 
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We chose a free-slip boundary condition for the closed western boundary. 

Berloff and McWilliams [3] compared the free- and no-slip boundary conditions in a 

framework of a three-layer wind-driven quasi-geostrophic model with lateral diffusion 

and showed that the main difference in the resulting dynamics was that for computa- 

tionally achievable frictional parameters, the western boundary current did not have 

local instability with a free-slip boundary condition. 

Here, the boundary conditions are chosen in such a way that the geostrophic 

transport into the domain balances the geostrophic transport out of the domain. 

However, the total mass, which also includes ageostrophic fields, is not fixed in time. 

The presence of open boundaries allows for small fluctuations of mass due to variations 

in the order of Rossby number fields. The description of such fluctuations is presented 

in Chapter 4. 

There is zero potential vorticity flux through the boundaries: 

JLQiUi ■ ndQ   =   0, (3.6) 

where m = {uhVi)T = (-^, ^-)T is a quasi-geostrophic velocity vector and n is a 

vector normal to the boundary Q. The contribution from planetary vorticity, ßy, is 

zero because the open boundaries are symmetric: yn = -ys. The potential vorticity, 

V tpi + F^ip^i-ijji), also integrates to zero since the streamfunction on the northern 

boundary is antisymmetric to the streamfunction on the southern boundary. 

However, the potential vorticity flux into the southern (northern) part of the 

domain depends on the particular form of the inflow and outflow conditions. Different 

conditions may result in an intensified or a weakened potential vorticity exchange 

across the potential vorticity front associated with the eastward jet. 

3.2.6    Sponge Operator 

Traditionally, models with open boundaries use so-called radiation condition schemes 

on the outflow boundaries. Such radiation conditions attempt to allow the outgoing 
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part of the disturbance to propagate out of the domain without reflecting back and 

therefore without contaminating the interior solution. 

However, radiation conditions were not used in the present model for the fol- 

lowing reasons. The open eastern boundary in the model has regions of both inflow 

and outflow (Figure 3-1). A radiation condition can be applied only on the outflow 

part of the boundary; the inflow is fixed in time, thus providing steady forcing. Nat- 

urally, the information on the outgoing disturbance that comes from the interior of 

the domain and leaves through the outflow part of the boundary is independent from 

the information that enters the domain from "outside" through the inflow part of the 

boundary. This results in a discontinuity between the inflow and outflow values of 

the field to which a radiation condition is applied (here, the streamfunction field). 

As a result, in our model, the problem of outgoing radiation is resolved by 

combining prescribed inflow/outflow boundary conditions with an absorbing sponge 

layer, which is represented in Equation (3.1) as 

Si = -S^yM-Qi)--^^--^)--^^--^), (3.7) 

where S(x, y) is a sponge function, #,- and ipi are instantaneous potential vorticity and 

streamfunction fields, and Qi and \I>; are prescribed "relaxation" potential vorticity 

and streamfunction fields. The latter are chosen as initial fields. Therefore, in addi- 

tion to absorbing the outgoing radiation, the sponge layer also allows for a smooth 

transition of the instantaneous interior flow to the prescribed distribution of inflow 

and outflow boundary conditions. 

A particular form of the sponge function is given by 

S(x,y)  = 
UTt decay 

0 for x < a, — b < y < b, 

(VFT)
2
 + (üF^)2        for x > a, y > b, (3.8) x weast ' " north 

(jp_)2 + (-ft^)2       for x > a, y < -b, 

where T,iecay = 24 hours is the minimum decay scale in the sponge layer, a = xe—30Ax 

and b = yn — 25Ay. The corresponding dimensional width of the sponge layer in the 
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Figure 3-2: Contours of sponge function, S(x,y), (a) and its derivatives, |f (b) and 
-^ (c). Solid line is used for positive values, dashed line is used for negative values. 
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eastern part of the domain is Weast = 550 km and the width in the northern and 

southern parts of the domain is Wnorth — Wsouth — 470 km (Figure 3-2). 

3.2.7 Numerical scheme 

The governing equations are discretized in time with a centered leapfrog scheme to 

integrate forward the potential vorticity field: 

4?  = Qti1 + 2At(^ + Stf - Vtf), (3-9) 

where k and I denote grid points in x and y directions, t — 1, t, and t + 1 are 

consecutive time steps, Jlx is a Jacobian term, S^1 is a sponge function term, and 

V^i is a dissipation term. To suppress a computational mode associated with the 

leapfrog scheme, the potential vorticity fields at t + 1 and t — 1 are averaged every 20 

iterations to get a corrected potential vorticity field at t + 1. 

To calculate Jlu the Arakawa Jacobian formulation is used. This allows no 

net advection out of the interior region of potential vorticity, enstrophy or energy as 

long as the streamfunction is constant along the boundary. 

3.2.8 The Inversion of the Potential Vorticity Field 

The time stepping scheme is applied to the potential vorticity field which is then 

inverted to get the streamfunction. The inversion problems are solved separately for 

the barotropic, ipbt = Fifa + F2tpi, and baroclinic, ißi,c = fa — fa, modes and are 

given by 

Vfyftt  =  F1q2 + F2ql-ßi2y   in Q, (3.10) 

fat  = Fifa + F2fa    in tt 

and 

(V2-7
2)^c = Q2~qi   infi, (3.11) 

■06c  =  fa-fa    in £1 
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The upper and lower layer streamfunctions are then restored: 

& = (iPbt + i-iyFtM-y-2. (3.12) 

FORTRAN 77 routines, H2GCIS and H2GCSS, from the CRAYFISH package 

were used for solving the Helmholtz Equations (3.10) and (3.11). 

3.2.9    Initialization of the Model 

To ensure the stability of currents entering the domain through the open boundaries, 

the model is initialized with a streamfunction field constructed from the Fofonoff 

solution. The latter satisfies Arnold's sufficient condition for stability of a stationary 

nonparallel flow [2], since fjf > 0. 

To create an initial condition, we first define the following streamfunction field 

(Figure 3-3a): 

TP* 
-ipF   forx*w<x<x*e,0<y<yn 

(3.13) 
ipF      for x*w < x < x*e, ys < y < 0, 

where x*e = -x*w = L*x/2Ly, L*x = 5000 km and ipF is the Fofonoff solution satisfying 

ißF = ßy° Hy + Vo) - sinhk(y + yo) +ly (-!)" (kV coshhnx      nv(y + y0) 
k2  \     yo sinhfcyo K ^     n     \kn)   coshfc„x0 y0 

where y0 = x0 = L*x/2Ly, k2
n = k2 + (rnr/y0)

2, k2 = 7
2 + C, C > 0. 

The potential vorticity field, q* = ßy + V2^* -J2^*, has a discontinuity in the 

middle of the domain (Figure 3-4), since 

lim q(x,y)  =  - lim o(x,y)  ^  0. 
!/->0- j/->0+ 

The discontinuity may produce instability, and therefore we smooth it out by interpo- 

lating q* between its values at y = -0.1 and y = 0.1 to get a new potential vorticity 

field, q„ (Figure 3-3d). The inversion of this field results in a streamfunction, ip^, 

(Figure 3-3c) that corresponds to a 600-km wide jet.  The initial condition thus is 
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Figure 3-4: Solid line: the meridional profile of potential vorticity, q* = ßy + V2^* - 
72^*, where V* is given in Equation 3.13. Dashed line: the meridional profile of 
interpolated potential vorticity, q**. 
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Figure 3-5: ^~ in the middle of the domain. di/),. 
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chosen as ip = ip** for (x, y) 6 fi (Figure 3-3 e,f). Notice that after the interpolation, 

the necessary condition for instability is satisfied, since there are regions where |j^- 

is negative (Figure 3-5). Smoothed field is no longer a steady solution. 

3.3    Energetics of the Model 

3.3.1    Energy Equation 

Multiplying the upper and the lower layer potential vorticity equations (3.1) by — V'I^ 

and —ip2 %■ correspondingly and adding them together give the following energy equa- 

tion: 

dE 
-^- + V-P=G. (3.14) 

Here, E is the total energy defined by the sum of the depth-integrated upper and 

lower layer kinetic energy and the available potential energy: 

^,If {(f)2 + (f )>>-«' 
where F0 = ^^, di = ^f-, i = 1,2. The x— and y— components of the energy 

flux vector, P = P(x)i + P(y)j, are defined by 

P(X) = E-rf^{^ + n^ + f^} (3-16) 
and 

P(v) = E^ij^-n^j (3.i7) 

where IT; = <& — ßy. The dissipation term is given by 

2 

G    =    -Y,dMVi + Si), (3.18) 
i=i 

where T>i and Si are defined in section 3.2.1. In the absence of dissipation, the time 

changes of the total energy are only due to the divergence of the energy flux vector. 
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3.3.2    Energy Sources and Sinks 

Total energy sources and sinks can be identified by integrating equation (3.14) over 

the model domain: 

dE 

~dt 
fXe fUn 
/    (p(y)(x, Vn) ~ P(y)(x,ys)) dx - /    P{x)(xe,y) dy + 
JXW Jys 

fXe [Vn G(x,y) dx dy, (3.19) 
Jxw   Jys 

where E = /£ JJ» E dx dy. 

The first two integrals on the right-hand side of equation (3.19) are energy 

sources provided by inflows through the open boundaries, whereas the last inte- 

gral is the energy sink due to dissipation. It is important to recognize that the 

time dependence of the energy source integrals stems from the following terms: 

Tpi(xe,y)§-tVi(xe,y), ipi(x,yn)§-tUi(x,yn) and ^i(x,ys)-§-tUi(x,ys). Due to the presence 

of a strong sponge layer, which acts to damp perturbations from the prescribed field, 

\I>i, the acceleration terms are negligible. Therefore, the energy input due to in- 

flow/outflow boundary conditions is time-independent, which implies that time vari- 

ations of total energy are only due to correlation between the solution and the dissi- 

pation term. 

In contrast, in the wind-driven quasi-geostrophic models, even though the 

wind-stress curl is steady, the energy input, defined as the correlation between the 

streamfunction and the wind-stress curl, - Jx fyip ■ V x r dx dy, can vary in time, 

depending on the solution structure. Primeau [29] showed a remarkable similarity be- 

tween the steady and the time-dependent solutions of a wind-driven reduced-gravity 

model of McCalpin and Haidvogel [25] and estimated the differences in the energy 

input for multiple equilibria at 13%. Scott and Straub [34] found that antisymmet- 

ric steady solutions with strong jet penetration and the jet axis aligned with the 

maximum wind stress were the most efficient at maximizing the energy input. Non- 
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symmetric steady solutions, on the other hand, were less correlated with the wind 

forcing and thus provided smaller energy input. 

In their time-dependent model, McC'alpin and Haidvogel [25] found that the 

symmetry of the global wind forcing structure was important for maintaining the high 

energy dynamical regimes, which closely resembled the antisymmetric steady state 

solutions of Primeau [29]. For high values of the wind forcing asymmetry parameter, 

the high energy state disappeared, and the flow was characterized by the low energy 

state with weakly penetrating jet and strong meanders. 

Consider the following thought experiment illustrating the importance of global 

wind forcing for the existence and maintenance of multiple dynamical regimes. As- 

suming all parameters and the basic state are the same in the wind-driven and 

boundary-forced models, the linear vicinities of a fixed point corresponding to the 

antisymmetric solution should be topologically equivalent for the two models, since 

the wind-forcing drops out of the linear equations of motion. As we show later, for 

the antisymmetric steady solutions, the structure and the growth rate of the most 

unstable modes are indeed similar for the regional and wind-driven reduced-gravity 

models. Now, suppose the wind-driven model trajectory is recovering from a low 

energy state and is moving towards a high energy state, thus approaching a linear 

neighborhood of an antisymmetric fixed point. In this case, the recirculations be- 

come larger, and the jet straightens. The spatial structure of the solution is now 

strongly correlated with the antisymmetric wind stress curl, and thus the energy in- 

put is increased. Therefore, if the model trajectory is close to the fixed point, but the 

nonlinear interactions are still at work, the wind forcing could play a crucial role in 

further "directing" the model towards a steady antisymmetric solution. The dissipa- 

tion is also important, and perhaps it might tend to move the trajectory away from 

the fixed point. Numerical experiments showed that the model initialized with the 

antisymmetric solution would take more than 20 years to move into a lower energy 

state.   Therefore, strong correlation between global wind forcing and an antisym- 
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metric solution, which expresses itself in the increased energy input, provides higher 

chances of reaching and maintaining a high energy state in a time-dependent wind- 

driven model. Such a mechanism for restoring the symmetry of a solution is absent 

in the boundary-forced model, where the energy input in fixed in time. It is only 

nonlinear eddy-mean flow and eddy-eddy interactions and dissipation that affect the 

model trajectory as it moves toward the fixed antisymmetric point. We therefore 

expect that in the time-dependent colliding jets model, it would be more difficult to 

reach and, subsequently, to maintain a high energy state. 

3.3.3    Energy Convergence Between the Time Mean Flow and 

Perturbations 

The energy conversion rates between the time mean flow and perturbations are impor- 

tant for understanding the dynamics of multiple states and of the transition between 

them. To derive the energy exchange rates, let us divide the potential vorticity and 

streamfunction fields into the time mean (denoted by bar) and the perturbation (de- 

noted by prime): 

Qi(x,y,t)  = qi(x,y) + <j'i(x,y,t), (3.20) 

i>i(x,V,t)  = ^i(x,y)+rt(x,y,t), (3.21) 

where i = 1,2 are layer indices. Then the potential vorticity equation (3.1) can be 

rewritten as 

da'- _ _ _ 
-£ + HA, v'i) + JWi, q'i) + J(iPi,qi) + m, q{) = vi + v\ + si + 3.    (3.22) 

Assuming that perturbations are small compared to the time mean fields, the lin- 

earized perturbation potential vorticity equation has the following form: 

da' - 
-£ + Jfa, q'd + JMa) = V[ + %. (3.23) 
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Figure 3-6: General energy conversion diagram for the 2-layer model. 

Multiplying equation (3.23) by -i\)\di and summing over two layers give the following 

equation for perturbation energy density: 

dt HK + P1 

.i=i dtdx + 2^ + J^v dx) + J[^ dx} + 

f M 
kdy + 

(3.24) 

where K[ = f 

i=\ 

I.'\ 2 /a,;,'\2 

(S) + (T$) jiseddykineticener§ydensityandpl = Wi-^f 
is eddy potential energy density. 

Since the perturbation streamfunction is zero on the boundaries, all the diver- 

gence terms of equation (3.24) disappear in the domain integral. Terms responsible 
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for time changes in the perturbation energy are the barotropic energy conversion 

rate, BTC, between the mean flow and perturbations due to work by eddy momen- 

tum fluxes and the baroclinic conversion rate, BCC, between the mean flow and 

perturbation due to work by eddy heat fluxes: 

BTC(x, y) 
dx ^,f)+^,f) 

d 
dy '«.f>+*t¥> (3.25) 

BCC(x,y)   =   FO(^-^)[J(^,^2)-J(^,^)]. (3.26) 

When the conversion rates integrated over the model domain are positive, the energy 

associated with perturbations grows in time, and therefore eddies draw the energy 

from the mean flow. As we noted earlier, the rate of external forcing due to inflow 

boundary conditions is given by the energy flux vector V • P, where P is defined in 

(3.16)-(3.17). The dissipation rate for the mean flow and for the perturbation are 

-E^.-to + Si) 
i=l 

(3.27) 

and 

-£«(^ + 3)- 
i=l 

(3.28) 

Integrals of the above conversion rates over the model domain are summarized in the 

energy conversion diagram in Figure  3-6. 

3.4    Ring Dynamics at the Western Wall 

The behavior of rings and their interaction with the western boundary currents may 

be crucial the stability of the system and therefore on the transition between multiple 

dynamical states. 
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Figure 3-7: A schematic illustrating the behavior of rings on the western boundary. 

A ring trajectory at the western boundary is affected by two competing pro- 

cesses (Figure 3-7). The first one is the formation of an image vortex with the opposite 

vorticity sign due to a rigid wall boundary condition. A newly created dipole struc- 

ture tends to propel itself along the boundary northward for anticyclonic rings and 

southward for cyclonic rings. The second process affecting the ring movement is its 

advection towards the middle of the domain by the western boundary current. There- 

fore, depending of the strength of the ring, it either moves towards the eastward jet 

or away from it. 

If the ring is weak enough and therefore is advected towards the middle of the 

domain, it usually rejoins the eastward jet and may, by injecting anomalous potential 

vorticity, further perturb it. However, if the ring is strong enough to overcome the 

advective force of the western boundary current, two scenarios are possible. First, 

the ring-image vortex dipole moves along the wall until entering an absorbing sponge 

layer. Such a ring might be able either to halt or to change the path of the western 
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boundary current. This, in turn, might break the symmetry of the inflow conditions 

near the separation point and lead to the overshoot of the opposite flowing boundary 

current. Second, a weaker ring may dissipate enough energy while traveling along the 

wall, to reverse its trajectory before reaching the sponge layer and subsequently to 

join the eastward jet. 
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Chapter 4 

Results for Reduced-Gravity 

Colliding Jets Model 

4.1    Model Formulation 

4.1.1    Governing Equation 

This chapter reports the results for the reduced-gravity version of the colliding jet 

model which isolates the importance of barotropic instability and dissipation for 

the existence and maintenance of low frequency variability and multiple dynamical 

regimes of a quasi-geostrophic jet with recirculations. The governing potential vor- 

ticity equation is easily deduced from equation (3.1) when the lower layer is assumed 

infinitely deep and motionless: 

^ + J(^q)  = V + S     infl, (4.1) 

subject to the boundary conditions: 

$ =  $, V2V> = C,   VV = M     in n. (4.2) 
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Here, ip — ip(x,y) is a quasi-geostrophic streamfunction, q = V2ip + ßy - -y2ip is 

potential vorticity. The parameter space is reduced to  , 

since the depth ratio, 5, and the baroclinic coefficient, a, are zero. Coefficient A2 

represents the interfacial friction, and therefore the dissipation in the upper layer 

is given by V - -A2V
2ip - AeV

6tp. The model geometry and the structure of the 

sponge layer are as described in Chapter 3. 

4.1.2    Energetics 

For the case of infinitely deep and motionless lower layer, the energy equation is 

dE 
äF + V.P=G. (4.3) 

Here, E is the total energy defined by the sum of the kinetic and available potential 

*  =  5      £W£)H-TV>. ("J 

energy: 

2 \\dxj       \dyi 

The x— and y- components of the energy flux vector, P = P(x)i + P(y)j, are defined 

as 

p{*)   =   -^-TpKu-^2 (4.5) 

and 

dt 

where II = q — ßy. The dissipation term is given by 

P(y)   =   ^-^v (4.6) 

G    =    -*I,(V + S). (4.7) 

106 



inflow 

K 

P~ 

BTC 
K 

P' 

D+S D'+S' 

Figure 4-1: Energy diagram for the reduced-gravity model. 

Since there is no horizontal heat transfer, the baroclinic conversion term between the 

perturbation and the time mean state is zero. It is only due to work by Reynolds 

stresses that there is an energy exchange between the mean flow and perturbations, 

given by the barotropic conversion rate: 

dip' 
BTC(x,y)   = 

dx 

dj}' 

dy 

+ 

(4.8) 

The energy input due to inflow boundary conditions is fixed in time and is given by 

domain-integrated divergence of the energy flux vector, P. The dissipation rate for the 

mean flow and for perturbations are —tp(V + S) and —ip'(V + S') respectively. The 

energy conversion diagram (Figure 4-1) summarizes the domain-integrated energy 

transfer rates for the reduced-gravity model. 
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4.2    Linear Stability Analysis of Steady Antisym- 

metric Solutions 

4.2.1    Steady States vs Interfacial Friction Coefficient 

In this section, we describe steady antisymmetric solutions of the reduced-gravity 

model. As we show later, such solutions closely resemble variability associated with 

a high energy state of the time-dependent model. Therefore, the linear stability 

characteristics of these solutions are important for understanding the eddy-mean flow 

interaction present in a high energy state. 

Steady antisymmetric solutions of the reduced-gravity model were calculated 

by adapting a version of the numerical code with enforced meridional antisymmetry. 

On each iteration, the potential vorticity field was stepped forward in time only for 

the southern half of the domain, y < 0, subject to ip = 0 at y = 0. The fields for 

the northern half of the domain, y > 0, were taken as mirror images of the fields 

for y < 0. The model was integrated until the following numerical equivalent of an 

equilibration criteria was satisfied: 

\E{t + At)-E(t)\ 9 

E(t) ' 

where E(t) is total energy at time t and At is the time step. 

Figure 4-2 presents steady antisymmetric solutions of the reduced-gravity model 

for Afm = 8-1010 m4 sec"1, Tin = 16 Sv and the following values of the interfacial fric- 

tion coefficient, Afm: 1.0-10"7, 5.0-10"8, 3.5-l(T8,3.0-10-8,2.8-HT8,2.5-KT8 sec"1. 

With an increase in the dimensional interfacial friction coefficient, Afm, the total en- 

ergy level of the steady solutions diminishes from 0.08 to 0.052 (Figure 4-3a), which 

is directly related to a decrease from 2350 to 1000 km in the longitudinal size of the 

recirculating gyres (Figure 4-3b). The maximum in the total eastward (westward) 

transport also drops from 41 to 26 (31 to 16) Sv (Figure 4-3c,d), indicating weaker 

eastward jet and recirculations. 
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4.2.2    Growth Rates, Phase Speeds and Structures 

of Unstable Modes 

To determine the growth rates, phase speeds and spatial structures of growing modes 

associated with steady state solutions, we used an initial value technique applied to the 

original nonlinear model. A similar approach was adopted by Simmons and Hoskins 

[36] in a study of quasi-geostrophic baroclinic instabilities on a sphere. The model was 

initialized with the sum of a steady state solution, ^5, and a uniformly distributed 

random noise, iß'(x,y). The amplitude of the perturbation potential vorticity field 

was chosen as 1% of the maximum in the steady state potential vorticity field, Qs- 

Let us represent the perturbation streamfunction as a modal solution of the 

form tp'(x,y,t) = Real A(x,y)e(-ar+1<T^t, where A(x,y) = Ar(x,y) + iAi(x,y) is a 

spatially varying amplitude, Ar and Ai are real functions, oT is a growth rate and Oi 

is frequency. The total energy of the perturbation field is given by 

1 
E(i>'(x,y,t))  = e2^- 

dB 
dx 

2 

+ 
dB 
dy + 72|S| (4.9) 

where B = Ar coso-tf — Ai sma^t + i (Ai coscrji + Ar sincr*). Assuming that the 

perturbation amplitude is small, and therefore the nature of the eddy-mean flow 

interaction is linear, the growth rate can be estimated by fitting a straight line to the 

natural logarithm of the perturbation energy: 

In E(tp'(x,y,t))  = 2art + \n 
dB 
dx 

2 

+ 
dB 
dy + 72|#f (4.10) 

When Afm = 1.0-10-7 sec-1, the perturbation energy decays to zero with time, 

and therefore the corresponding steady antisymmetric solution is stable. However, 

for Afm > 5.0 • 10-8 sec-1, steady antisymmetric solutions are unstable, and the time 

evolution of In E(ip'(x, y)) (Figure 4-4a) is characterized by three distinct regions 

which reflect changes in the nature of internal interactions. Initially, the uniformly 

distributed perturbation field does not correspond to a preferred mode of instability 
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and therefore is not efficient at extracting energy from the mean flow. After 3 or 

4 years, the exponentially growing mode arises on the axis of the eastward jet and 

in the area of recirculations, and hence \nE(ip'(x,y,t)) displays linear growth. For 

Afm < 3.5 • 10-8 sec-1, the perturbation amplitude becomes so large after 13 to 15 

years, that the nonlinear eddy-eddy interactions become dominant, and the growth 

rate saturates. Notice that for Af™ — 5.0 • 10-8 sec-1, the growth rate was still linear 

after 27 years. This indicates that a trajectory of the time-dependent model might 

stay in the vicinity of the fixed point associated with the antisymmetric solution for a 

long time. In general, there might be several unstable, exponentially growing modes 

in the system, which would then enforce curvature of In E(tp'(x, y, t)) during a stage of 

exponential growth. The absence of such curvature in In E(tp'(x,y,t)) (Figure 4-4a) 

in the present model indicates the existence of just one unstable mode. 

The e-folding time, 1/a, of the unstable, oscillating mode decreases from 4.8 

years for Afm = 5.0 • 10-8 sec-1 to 417 days for Afm = 2.5 • 10-8 sec-1 (Fig- 

ure 4-4b). As we show later, the time-dependent regional model displays multiple 

dynamical regimes when A%im = 3.- 10-8. The corresponding e-folding time for the 

nearly antisymmetric solution is 481 days. In comparison, Primeau [29] estimated the 

e-folding time at 897 days for the antisymmetric steady state solution of the wind- 

driven reduced-gravity model with the parameter set from McCalpin and Haidvogel's 

model [25]. The differences in the e-folding times between the present model and the 

wind-driven case could be attributed to the differences in the strength of forcing. 

Snapshots of the most unstable modes (Figure 4-5) show a spatial structure 

similar to that calculated by Primeau [29]. There are four cells on the axis of the 

eastward jet and weaker cells in the area of westward recirculations. Visualization 

of the mode's time series reveals a very complicated propagation pattern, when am- 

plitudes and spatial extents of the cells located on the jet axis slowly grow at some 

times and quickly shift westward at other times. The westward propagation speed of 

the cells in the area of the recirculations is constant in time. Qualitative similarity 
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between the results of linear stability analysis of the antisymmetric solutions for the 

regional and the wind-driven model stems from the fact that wind-forcing drops out 

of the linearized equations of motion for the wind-driven case. 

When nonlinearities become large, the potential vorticity anomalies associated 

with four cells start interacting with each other leading to saturation in the energy 

growth and to formation of rings in the area east of the recirculations. This process 

might be identified as a spatial growth of instabilities. 

4.3    Sensitivity Study for Various Interfacial Fric- 

tion Coefficients 

4.3.1    Classification of States 

The regional colliding jet model showed strong dependence of the flow character on 

the value of the interfacial friction coefficient, A^1™- Figures 4-6 and 4-7 summarize 

the results of the sensitivity study for the following two values of the biharmonic 

diffusion coefficient: Afm = 8 • 1010 m4 sec-1 and Afm = 8 • 108 m4 sec"1. For both 

values of Afm, with a decrease in Afm, the model progressed through the following 

regimes: 

• State A. The flow structure consists of a very broad, stable eastward jet; the 

recirculations are absent. 

• State B. The flow structure is stable and consists of an eastward jet surrounded 

by two recirculating gyres. 

• State C. The flow structure is unstable and consists of an eastward jet sur- 

rounded by two recirculating gyres. The eddy field is dominated by eastward 
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and westward propagating meanders. Weak rings form east of the recirculating 

gyres. 

• State D. The flow structure is unstable and consists of an eastward jet and 

two recirculating gyres. The longitudinal size of the recirculations changes with 

time thus giving rise to low frequency variability. The amplitude and the spatial 

structure of the eddy field are strongly time-dependent. The eddy field is char- 

acterized by eastward and westward propagating meanders. Their interactions 

give birth to rings in the area east of the recirculation gyres. 

• State E. The flow structure displays well-developed low frequency variability. 

The model stays in one of the two dynamical regimes: high energy state D or 

low energy state F. 

• State F. The flow structure is unstable and consists of an eastward jet with large 

meridional excursions in the separation point. The eddy field is dominated by 

large-amplitude, westward propagating meanders and strong rings formed only 

on the western boundary. The recirculations are absent in instantaneous fields. 

The existence of multiple energy regimes is illustrated in Figure 4-8, which 

shows normalized histograms of total energy for various values of the interfacial fric- 

tion coefficient. The energy level of steady antisymmetric solutions discussed in sec- 

tion 4.2.1 is denoted by a dashed line and is either equal or higher than that of 

the corresponding time-dependent solutions. For weakly unstable flows (Afm = 

5 • 10~7 sec-1), the trajectory of the time-dependent model stays in the vicinity on 

a fixed antisymmetric point, and therefore the range of diagnosed energy values is 

small and is close to E($s). The corresponding energy histogram has only one peak, 

indicating a unique dynamical regime. For stronger unstable flows, the range of en- 

ergy values of the time-dependent model becomes larger. With further decrease in 

Afm, the energy histogram changes its shape from a normal to a bimodal distribu- 

tion.   The model now has two preferred energy states, each one associated with a 
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distinct dynamical regime. For small values of the interfacial friction coefficient, the 

high energy state becomes unstable, and the model trajectory stays in a dynamical 

regime associated with a low energy state. 

4.3.2    Examples of States 

In this section, we briefly describe the dynamics of different states. The full analysis 

of the model will be given in section 4.4 for the case of state E. 

State A 

For high values of the interfacial drag coefficient, the flow has the following structure. 

Part of the meridional inflow separates from the western boundary current and flows 

eastward creating a broad stable current that leaves the domain though the eastern 

boundary. Another part of the flow represents two colliding currents that form a 

narrow eastward jet that broadens 400-700 km east of the separation point (Figure 

4-9). There are no recirculations in this state, although there are weak (0.2 m sec-1) 

westward velocities north and south of the narrow part of the jet. Instead of closing 

on themselves, contours of streamfunction and potential vorticity loop towards the 

western boundary current and then curve back eastward. Even though J^ is negative 

in the eastward jet, therefore satisfying the necessary condition for instability, the 

interfacial drag is so strong that it suppresses any growing disturbances. 

State B 

An example of the flow structure for state B is presented in section 4.2.1 (Figure 4-2a) 

for Afm = 1 • lO^sec-1 and Afm = 8 • 1010 m4 sec-1. 
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Figure 4-9: Contours of time mean streamfunction (a) and potential vorticity (b) for 
Agm = 2.5 • 1(T7 sec-1, initial inflow transport of 16 Sv and Afm = 8 • 108 m4 sec-1. 
Solid line is used for positive values, dashed line is used for negative values. 
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Figure 4-10: Contours of time mean streamfunction (a) and potential vorticity (b) 
for A2 = 5.0 • 10-8 sec-1, initial inflow transport of 16 Sv and A6 = 8 • 1010 m4 sec-1. 
Solid line is used for positive values, dashed line is used for negative values. 
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Figure 4-11: Energy diagram for .42 = 5.0 • 10 8 sec 1, initial inflow transport of 16 
Svand A = 8-1010m4sec-1. 

State C 

In agreement with linear stability analysis of section 4.2.1, the flow becomes unstable 

when the interfacial friction coefficient falls below some critical value. In state C, when 

Afm is close to the critical value, the model trajectory is trapped in the vicinity of 

an antisymmetric fixed point, since the eddy-mean flow interactions dominate the 

eddy-eddy interactions. This explains why the model stays in one dynamical regime 

and why the time mean streamfunction and potential vorticity fields (Figure 4-10) 

closely resemble the steady antisymmetric solution. The flow structure consists of an 

eastward flowing jet and two recirculating gyres. The longitudinal size of the time 

mean recirculations equals 1500 km (compared to 1600 km in the case of a steady 

solution) and does not substantially change in time. 

The energy conversion diagram summarizing the energetics of the model shows 

that the barotropic conversion term is small. The perturbation energy is only 3.3% of 
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the total energy. The eddy field is dominated by eastward and westward propagating 

meanders. Perturbation kinetic and potential energy densities (Figure 4-12) have spa- 

tial structures resembling the structure of the linearly unstable mode. Apparently, 

the dynamics is dominated by the linear eddy-mean flow interactions and weakly- 

nonlinear eddy-eddy interactions. The amplitude of the perturbation fields near the 

separation point shows that the latter has weak meridional excursions due to me- 

ander movement. The dissipation of the perturbation energy occurs in the area of 

western boundary current and on the axis of the jet west of 1000 km. The barotropic 

conversion energy density is aligned with the jet axis and is maximum west of 1500 

km. The spatial structure of the perturbation fields indicates that rings formed east 

of the recirculations are so weak that they are quickly dissipated during their west- 

ward propagation in the recirculation regions. Therefore, they mostly provide weak 

potential vorticity mixing across the front in the region east of the recirculations. 

State D 

In state D, the model exhibits low frequency variability associated with changes in the 

zonal extent of the recirculating gyres. The time mean streamfunction and potential 

vorticity fields (Figure 4-13) have 1200 km long recirculations. The energy level of the 

time mean streamfunction is 14% smaller than the energy level of the antisymmetric 

steady solution. During the flow evolution, the recirculation size fluctuates between 

700 and almost 1800 km. Since most of the potential energy is contained in the 

recirculation areas, and because the total energy is dominated by the potential energy, 

the time series of total energy shows periods of high and low values (Figure 4-14). 

For high values of total energy, the model trajectory is in the vicinity of an an- 

tisymmetric steady solution. The recirculation gyres are about 1800 km long, and the 

eddy field is very weak. The flow however, is linearly unstable, and therefore growing 

disturbances draw energy from the mean flow. The amplitude of the eddy field in- 

creases with time, until nonlinear interactions start dominating. At this moment, the 
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Figure 4^13: Contours of time mean streamfunction (a) and potential vorticity (b) 
for A2 = 3.5 • 10-8 sec-1, initial inflow transport of 16 Sv and A6 = 8 • 1010 m4 see-1. 
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Figure 4-14: Time series of total nondimensional energy for Ai 
initial inflow transport of 16 Sv and Ae = 8 • 1010 m4 sec-1. 

3.5 • 10~8 sec-1, 

meanders reach large amplitudes, which leads to the formation of stronger rings east 

of the recirculations. As the rings travel westward in the recirculation region, they 

mix opposite sign vorticity into the surrounding fluid and homogenize the surround- 

ing, thus decreasing the recirculation strength. Upon reaching the western wall, they 

are advected by the western boundary current and entrained into the eastward jet. 

The formation and propagation of strong meanders and rings leads to a decrease in 

the size of the recirculating gyres and to a subsequent drop in the total energy level. 

Once the recirculations shrink, the flow becomes less turbulent, and perturbations 

decay. At this point, the advection of potential vorticity by the western boundary 

current becomes dominant and restores large recirculations, which causes the total 

energy to increase. 

The conical shape of perturbation kinetic and potential density fields (Figure 

4-15) is connected to the existence of meanders and rings not only on the axis of the 

jet, but also in the recirculation regions and along the western wall. The barotropic 

conversion density and the dissipation of perturbation energy are maximum on the 

axis of the jet west of 500 km and along the western wall. 
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Figure 4-16: Energy diagram for A2 = 3.5 -10 8 sec 1, initial inflow transport of 16 
Sv and A = 8 • 1010 m4 sec"1. 

The energy diagram (Figure 4-16) summarizes the domain-integrated energy 

transfers for state D. Compared to state C, the energy associated with the mean 

field did not change much. However, the perturbation kinetic energy was an order of 

magnitude larger, and the perturbation potential energy grew more than three times. 

The barotropic conversion was almost twice as large. Since the interfacial friction 

was weaker, both mean and perturbation energy dissipation terms were smaller than 

in state C. The partition of perturbation energy reached 9% compared to only 3% in 

state C. 

State E 

In state E, the model exhibits strong low frequency variability associated with high 

energy periods, when the flow structure is as in state D, and with low energy periods, 

when the flow structure is as in state F. The details of the dynamics for state E are 

presented in section 4.4. 
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State F 

For small values of the interfacial friction coefficient, the flow is strongly unstable. 

After perturbing an antisymmetric steady solution (see section 4.2.1), the eddy field 

grows rapidly, drastically changing the structure of the mean flow and causing the 

recirculations to disappear. The separation point of the eastward jet suffers large 

meridional excursions. Since northward and southward overshoots are equally possi- 

ble, the western boundary currents appear to be separating early from the wall and 

flowing eastward, thus creating a region of zero streamfunction and "homogenized" 

potential vorticity (Figure 4-17). The time mean fields are therefore misleading and 

can not be interpreted as structures persisting in time. The recirculations are not 

present in the instantaneous fields. Instead, there are individual vortices, trapped 

between meander's highs and lows, which provide weak mixing on the flanks of the 

jet. 

The strong eddy field is dominated by large amplitude, westward propagating 

meanders, which do not allow any ring formation in the interior of the model domain. 

However, the interaction of these meanders with the western wall creates large excur- 

sions in the separation point and strong rings that, due to a no-normal-flow boundary 

condition, move along the western boundary against the advective force of the west- 

ern boundary current. Boundary ring formation provides strong potential vorticity 

mixing across the front and tends to decrease the asymmetry in the inflow conditions 

near the collision point. However, for a given value of the interfacial friction coeffi- 

cient, the meander amplitudes are large enough to guarantee strong excursions in the 

separation point, which keeps the model trajectory in a low energy state. 

In contrast with states C and D, the spatial structure of perturbation energy, 

its dissipation and barotropic conversion (Figure 4-18) have maxima along the western 

boundary. Their penetration into the model interior is less than 500 km. The energy 

diagram (Figure 4-19) summarizes domain-integrated energy transfers. 

130 



500        1000       1500      2000      2500      3000      3500      4000      4500 
WEST - EAST DISTANCE ( KM ) 

500       1000 1500      2000      2500      3000      3500 
WEST - EAST DISTANCE ( KM ) 

4000      4500 

Figure 4-17: Contours of time mean streamfunction (a) and potential vorticity (b) 
for .4.2 = 2.0 • 10~8 sec-1, initial inflow transport of 16 Sv and A% = 8 • 1010 m4 sec-1. 
Solid line is used for positive values, dashed line is used for negative values. 
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4.4    Reference Run: State E 

4.4.1    Dimensional Parameters 

As a reference case, we chose a run that displayed well-developed multiple dynamical 

regimes. The dimensional scales and parameters were chosen as follows: 

L = 2400 km, 

Lx = 4667 km, 

Ldef = 47.64 km, 

„4f" = 8-1010m4sec-\ 

^f^S-lO^sec-1, 

L>i = 600 m, 

133 



U = 1 m sec l. 

Note that all the dimensional parameters are as in McCalpin and Haidvogel [25], 

except for the value of the interfacial friction coefficient, where they used Afm = 

10~7 sec-1. With the above values of dimensional parameters, the strength of the 

total inflow into the model domain is estimated at Tin - 16 Sv. After the initial spin 

up, the model was integrated for 970 years to obtain all the necessary statistics. The 

dimensional time step was 140 minutes, and the streamfunction fields were recorded 

every 4.7 days. 

4.4.2    Energy Time Series and Their Spectra 

Figure 4-20 shows the time series of kinetic, potential and total energy which are 

characterized by chaotic fluctuations. On average, total energy is partitioned between 

92% potential and 8% kinetic energy. Therefore, total and potential energy time series 

are well correlated, and we shall concentrate on the total energy behavior in the next 

sections. 

The kinetic energy power density spectrum (Figure 4-2la) is red and has dif- 

ferent slopes for periods less than 4 months and periods between 1 and 7 years. There 

are peaks in the spectrum at the time scales of 5.1 months and 7.5 months. To en- 

sure their significance, we narrowed confidence intervals by computing power density 

spectrum for periods less than 5 years (Figure 4-23b). The energy associated with 

the 5-month period is at least twice as high as the energy of the 7-month period 

(Figure 4-23d). The first peak is associated with the interaction of large amplitude, 

westward propagating meanders with the western boundary during the low energy 

period, which leads to large meridional excursions in the separation point and to for- 

mation of rings on the wall. Figure 4-2lb presents power density spectrum multiplied 

by the frequency which reveals that most of kinetic energy lies in the band between 1 
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Figure 4-20: Time series of nondimensional kinetic (a), potential (b) and total (c) 
energy. Parameters: Tin = 16 Sv, Afm = 8-1010 m4 sec"1 and Afm = 3.0 -HT8 secT1. 
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and 10 years. For periods higher than 7 years, the kinetic energy spectrum is roughly 

flat. 

Figure 4-22 shows that most of the potential energy is on the decadal time 

scales, with a significant level on interannual scales. Similar to the kinetic energy 

spectrum, it has peaks at 5.1 and 7.5 months (Figure 4-23a), however, the energy 

associated with them is quite low (Figure 4-23c), which might be the signature of the 

ring life cycle. For comparison, a peak in the potential energy spectrum (not in the 

kinetic energy) at periods between 7 and 8 months was also observed in the wind- 

driven reduced-gravity model of McCalpin and Haidvogel [25] and was attributed to 

the preferred time scale of eddy-mean flow interaction. 

4.4.3    Energy Histograms 

The histogram of nondimensional total energy, TE, (Figure 4-24) has a bimodal dis- 

tribution which reveals two preferred energy regimes of the model: state L with 

0.062 < TE < 0.064 and state H with 0.066 < TE < 0.072. The transition 

states, HL (high to low) and LH (low to high), are characterized by the energy 

level 0.064 < TE < 0.066. As we show in the following section, HL and LH transi- 

tions are dynamically different. Based on the histogram, the probability of the model 

staying in a particular energy regime is estimated as 0.79 for state H, 0.16 for state 

L and 0.05 for the transitions. 

For comparison, in the wind-driven reduced-gravity model of McCalpin and 

Haidvogel [25], the total energy histogram did not have a bimodal distribution. In- 

stead, it displayed three energy peaks associated with three different dynamical regimes. 

There was significant overlap between the different states, which indicated that the 

model was spending as much time in transition as in any given state. 

The distribution of kinetic energy is not normal. MATLAB QQPLOT rou- 

tine applied to the kinetic energy time series shows the quantiles of the normalized 
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kinetic energy time series, jifj^}, versus the quantiles of the generated random 

time series with normal distribution. Here, Kj = (KEj — KE)/std(KE), where 

KE = jfTjf=lKEj and st&{KE) are the mean and the standard deviation of the ki- 

netic energy time series, \KEf=A . QQPLOT allows to determine whether the time 

series come from the same distribution. Figure 4-25 indicates that the tails of the 

kinetic energy time series do not fit within the error bars calculated for normal dis- 

tribution. Therefore, kinetic energy time series is not normal due to the existence 

of two different dynamical regimes. However, because of a significant overlap, the 

distribution does not appear to be bimodal. 

As we describe later, in the present model, energy state L is related to a dy- 

namical regime of an eastward flowing jet with strong meridional fluctuations in the 

position of the separation point and violent large-amplitude, westward propagating 

meanders. The state does not have recirculating gyres, and its eddy field is char- 

acterized by strong rings generated only on the western wall and not in the model 

interior. State H, on the other hand, possesses well-developed recirculations. How- 

ever, the longitudinal size and the symmetry of the recirculations suffer significant 

changes in time, thus giving rise to strong low frequency variability within energy 
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State H. The eddy field is characterized by periods of strong and weak ring forma- 

tion in the region east of the recirculation gyres. An attempt to determine clear 

energetic boundaries between solutions with large, antisymmetric recirculations and 

small, asymmetric ones failed. Therefore, the energy histogram provides energetic 

boundaries only between a state with no recirculations and a state with spatially 

varying recirculations. 

4.4.4    Time Mean Flow 

Although the total energy has a bimodal distribution, the time averaged streamfunc- 

tion and potential vorticity fields are still useful in describing the system. Averaged 

over the whole time series, the time mean streamfunction field (Figure 4-26a) is char- 

acterized by two antisymmetric recirculating gyres pressed against the eastward jet 

and the western boundary currents. The meridional and longitudinal sizes of the 

gyres are 200 and 1000 km respectively. East of the recirculations, the jet widens up 

to 400 km. 

The corresponding potential vorticity field (Figure 4-26b) shows two tongues 

of anomalously high and low potential vorticity advected by the western boundary 

current towards the middle of the domain from the north and south. The recirculation 

regions are marked by closed potential vorticity contours. The value of homogenized 

potential vorticity in the northern recirculation indicates that water is brought from 

the north, entrained into the jet and then mixed north of the jet. The opposite is 

true of the southern recirculation. The potential vorticity front associated with the 

eastward jet is sharp near the separation point and becomes wider east of 500 km, 

which might be the sign of enhanced cross-front mixing in this area. 
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Figure 4-26: Contours of the time mean streamfunction field (a) and potential vortic- 
ity field (b). Dashed line denotes negative values, solid line denotes positive values. 
Parameters: Tin = 16 Sv, Af1 = 8 • 1010 m4 sec"1 and Afm = 3.0 • KT8 sec"1. 
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4.4.5 Time Mean Eddy Variability 

The spatial structure of the time mean eddy variances (Figures 4-27a-d) indicates that 

the variability is concentrated in the area of the eastward jet and its recirculations and 

in the western boundary region close to the separation point. Within the eastward 

jet, the variability reaches its maximum around 800-1000 km and decays further 

eastward leveling to zero beyond 2000 km. Another maximum is aligned with the 

western boundary current between 900 and 1500 km. As will be discussed later, the 

conical shape of the variability region is associated with the barotropic instabilities 

in the form of waves, rings and meanders and their interactions with the western 

boundary current, changes in the spatial structure and the size of the recirculation 

gyres and meridional shifts in the position of the separation point of the eastward jet. 

4.4.6 Statistical Differences in the Eddy and Time Mean 

Flow Energy 

Figures 4-28a,b present a segment of the total energy and the corresponding eddy 

energy time series. Visually, the low total energy periods are correlated with the 

periods of maximum eddy energy. To quantify it, we computed a two-dimensional 

histogram (Figure 4-29) showing the number of times the model had a particular 

total energy/eddy energy pair. When interpreting the results, one must remember 

that total energy is the sum of mean flow energy, eddy energy and temporary posi- 

tive or negative correlations between the mean and fluctuating fields. The histogram 

shows two separate clusters of the eddy energy values. The first one is associated 

with the high total energy state, H, and has the following mean and standard devia- 

tion: (ra#,<7#) = (0.0105,0.037). The second cluster corresponds to L-state and has 

(rriL,<JL) — (0.0163,0.041) as mean and standard deviation. The above analysis sug- 

gests that the high (low) total energy regimes are associated with the low (high) eddy 

energy. The small overlap between the two eddy states indicates that in addition to 
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Figure 4-28: A segment of the time series of nondimensional total energy (a) and 
of corresponding nondimensional total eddy energy (b). Parameters: Tin = 16 Sv, 
Afm = 8 • 1010 m4 sec"1 and Afm = 3.0 • lO^sec"1. 
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Figure 4-29: Two-dimensional histogram of a segment of the total energy and the 
total eddy energy from Figure 4-28. Parameters: Tin = 16 Sv, Afm = 8 • 1010 m4 

sec"1 and Afm = 3.0 • 10"8 sec"1. 

changes in the eddy intensity, there might be some structural differences in the eddy 

field. 

4.4.7    Enstrophy 

Figure 4-30a presents the histogram of total nondimensional enstrophy for the ref- 

erence run. Clearly, similar to total energy, it has a bimodal distribution with well- 

separated peaks associated with two dynamical regimes. Hence, in addition to total 

energy, total enstrophy could be another indicator of different dynamical regimes. 

The distribution of perturbation enstrophy (Figure 4-30b), although also bimodal, 

has a significant overlap. 

Total enstrophy length scale can be defined as: 

L^ = iyf, (4-11) 

where L = 2400 km is model's horizontal length scale, E is domain-integrated total 

nondimensional energy and e = /^n /^ \ dydx is total nondimensional enstrophy. 
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Figure 4-30:  (a):  Histogram of total nondimensional enstrophy.   (b) Histogram of 
perturbation nondimensional enstrophy. Parameters: Tin — 16 Sv, Afm = 8 • 1010 m4 
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Similarly, eddy enstrophy length scale, L'enst, is defined in (4.11), where E is now the 

domain-integrated perturbation energy and e = J^n /^ ^- dydx is eddy enstrophy. 

Figure 4-31 shows two-dimensional histograms of total energy vs Lenst and of 

eddy energy vs Lenst. Clearly, there is no significant change in the enstrophy length 

scale between the high and low energy regimes. Therefore, regime variability is not 

connected to scale variability. 

4.4.8    Mean Fields Associated with Different Energy States 

The averaging of the fields within several energy bands shows qualitative differences 

in the structure of the flow and helps to understand the nature of the multiple dy- 

namical states of the model. Figures 4-32 and 4-33 present ensemble averages of the 

streamfunction and potential vorticity over four energy bands: low energy: L=[0.062 

0.064], transition and a low range of the high energy state: HL=[0.064, 0.0685] , a 
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Figure 4-32: Ensemble average of the streamfunction fields with the total energy levels 
for HH-state (TE > 0.0705) (a), HM-state (0.0685 <TE < 0.0705) (b), HL-state 
(0.064 < TE < 0.0685) (c) and L-state (TE < 0.064) (d). Parameters: Tin = 16 Sv, 
Afm = 8 1010 m4 sec-1 and Afm = 3.0 • 10~8 sec -l 
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Figure 4-33: Ensemble average of potential vorticity fields with the total energy levels 
for HH-state (TE > 0.0705) (a), HM-state (0.0685 <TE < 0.0705) (b), HL-state 
(0.064 <TE < 0.0685) (c) and L-state {TE < 0.064) (d). Parameters: Tin = 16 Sv, 
Afm = 8 • 1010 m4 sec"1 and Afm = 3.0 • 10~8 sec"1. 
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medium range of the high energy state: HM=[0.0685, 0.0705] and a high range of 

the high energy state: HH=[0.0705, 0.072]. 

The structures of the streamfunction fields are similar for the last three energy 

ranges: all of them are characterized by the presence of symmetric recirculations. 

However, the longitudinal size of the gyres decreases from 1500 km for HH-state 

to 800 km for HL-state. In HM- and HL- states, the width of the eastward jet 

increases from 200 km just east of the recirculations to 400 km east of 2000 km. The 

sudden change in the jet's width is associated with the presence of larger meanders 

and the formation of rings east of the recirculation gyres. The corresponding potential 

vorticity fields differ not only by the shape of the recirculation regions, but also by the 

values of the mixed q : HH has the highest values of anomalous potential vorticity. 

Another obvious difference is the detachment of the mixed q—region from higher and 

lower latitudes in HL-state, which allows for larger excursion of potential vorticity 

contours indicating a more unstable flow structure. 

In the L-energy range, the time mean field is a combination of equally possible 

antisymmetric solutions. One is characterized by the overshooting southward-flowing 

western boundary current separating from the wall approximately 300 km south of 

the middle of the domain. The other one has a northward-flowing western boundary 

current separating 300 km north of the middle of the domain. Such solutions explain 

the presence in the time mean of an anticyclonic/cyclonic vortex north/south of the 

middle of the domain. In the time mean, the recirculations appear to be pushed 

further eastward, and their zonal extent is only 500 km. They exist mostly in the 

time mean sense; the instantaneous fields have individual vortices confined between 

large amplitude, westward propagating meanders. The corresponding time mean 

potential vorticity field appears to have a 500 km by 500 km region of "homogenized" 

potential vorticity in the western part of the domain. This is misleading, since the 

time mean field is constructed by averaging of two opposite sign potential vorticity 

fields due to overshooting events.   Nevertheless, this is a region of vigorous mixing 
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across the front, since large amplitude, westward propagating meanders interacting 

with the western wall form strong rings, that propagate away from the middle of the 

domain. 

4.4.9    Typical Energy Cycle 

Eddy Energy - Total Energy Partition 

To understand better the nature of multiple dynamical regimes, we choose a typical 

cycle (Figure 4-34a) when the total energy rapidly decays (HL-transition) and, after 

fluctuating around minimum values for 10-50 years, quickly builds up again reaching 

its maximum (LH-transition). Typical transitions take between 5 and 10 years and 

are associated with significant changes in the spatial structure of the mean and eddy 

fields. Such changes are dynamically asymmetric for HL- and LH-transitions. The 

ratio of eddy to total energy (Figure 4-34b) indicates that in the former case, the eddy 

field part increases from 10% to 30%. During the LH-transition, the eddy energy level 

reaches its minimum of 7% and averages at 15% in H-state. The amplitude of the 

fluctuations in the eddy-mean flow partition is the highest during L-state. 

Flow Evolution During a Typical Energy Cycle 

In this section, we describe the evolution of the streamfunction and potential vortic- 

ity fields during a typical energy cycle depicted in Figure 4-34a. At t = 1.3 years 

(denoted by number 1 in Figure 4-34a), when the total energy is in H-state, the 

flow (Figures 4-35a,b) has well-developed recirculations with a longitudinal extent 

of 1500 km. Small fluctuations in the position of the separation point are due to 

weak eastward propagating meanders. East of the recirculation region, where the jet 

is wider and therefore more stable, meanders are characterized by westward propa- 

gation and larger amplitudes. The collision of eastward and westward propagating 

meanders leads to formation of rings in the region east of the recirculations.   The 
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Figure 4-34: (a): Segment of the total energy time series corresponding to a typical 
low frequency cycle, (b): The corresponding ratio of eddy to total energy times 100%. 
Parameters: Tin = 16 Sv, A = 8 • 1010 m4 sec"1 and A2 = 3.0 • 10~8 sec"1. 
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meander amplitudes define the strength and the size of created vortices and thus the 

degree of potential vorticity mixing across the front. Once the ring detaches from the 

front, it travels westward in the recirculating gyres mixing the opposite sign vorticity 

into the surroundings and homogenizing the surrounding gradient. Upon reaching 

the western wall, at this stage of the flow development, rings are not strong enough 

to overcome the advective influence of the western boundary current. Thus, they join 

the eastward jet and further perturb it. 

At t = 5.2 years (denoted by number 2 in Figure 4-34a), the total energy level 

is still high, and the eddy energy partition increases from 10% to 20%. The growth 

of jet instabilities and subsequent ring formation lead to a decrease to 800 km in 

the longitudinal extent of the recirculations (Figures 4-35c,d). Although the jet front 

is still symmetric in the recirculation region, the gyres lose their symmetry. One of 

them starts wrapping around another one, thus giving birth to stronger and larger 

rings and therefore providing enhanced potential vorticity mixing across the front. 

Rings in turn tend to further decrease the size and the strength of the recirculations. 

Time t = 10.4 years (denoted by number 3 in Figure 4-34a) marks the begin- 

ning of a sharp decline in the total energy level and corresponds to a further increase 

in the eddy energy partition. Although the jet still separates in the middle of the 

domain, its front exhibits strong northward and southward oscillations east of 500 

km. Figures 4-35e,f show one of the states, with a smaller northern recirculation 

and a northward front excursion. The latter results in a production of stronger and 

larger rings on the south and weaker and smaller rings on the north. Therefore, upon 

reaching the western wall, the rings have different trajectories; strong cyclonic rings 

are propelled southward, thereby decreasing the inflow from the south, whereas weak 

anticyclonic rings join the eastward jet without affecting the inflow from the north 

to any great extent. These processes create conditions favorable for the southward 

shift in the position of the separation point. The opposite is true when the front has 

a southward excursion. 
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Figure 4-36 presents instantaneous streamfunction and potential vorticity fields 

at times t = 13, 14.3 and 15.6 years (denoted by numbers 4, 5 and 6 in Figure 4-34a) 

which correspond to a 30% maxima in the eddy energy partition. A sharp decay in 

the total energy level is due to the potential energy decline associated with an almost 

complete disappearance of the recirculations. Instead of the well-developed gyres, 

there are individual vortices corresponding to meander peaks and troughs east of 500 

km. Such structures provide efficient mixing on the flanks of an eastward jet. The 

separation point shifts 300 km south and north of the middle of the domain and, 

along with large amplitude meanders provides stronger fluctuations in the domain- 

integrated potential vorticity field. 

During this stage of the flow development, there is no ring formation in the 

interior of the domain. Instead, strong rings are constantly formed on the western 

boundary in the following manner. Large amplitude meanders propagate westward 

similar to long Rossby waves. If a negative potential vorticity anomaly associated 

with a meander peak reaches the western wall, it starts moving northward due to the 

influence of an image anomaly arising from a no-normal-flow boundary condition. The 

separation point is therefore shifting northward. Meanwhile, an upstream positive 

potential vorticity anomaly corresponding to a meander trough continues to propagate 

westward. Upon hitting the western wall, it starts moving southward. Two anomalies 

propelling in the opposite directions cause the disruption in the potential vorticity 

front. As a result, a strong, northward propagating anticyclonic ring is formed from 

the negative potential vorticity anomaly, and the separation point jumps southward. 

The process is repeated for the positive potential vorticity anomaly, which 

leads to further southward excursion of the separation point and to the formation of a 

strong, southward propagating cyclonic ring. The dynamics of such strong boundary- 

formed rings tends to restore the symmetry of the inflow conditions. However, the 

interaction of the large amplitude, westward propagating meanders leads to the per- 

sistence of a low energy state. 
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The model stays in this dynamical regime until the instabilities start decaying, 

perhaps due to frictional effects, which results in the decrease of meander amplitudes 

and in the amplitude of the separation point excursions. The strength of the boundary 

formed rings also decreases, which helps to restore the inflow symmetry. At times 

t = 18.2 and 20.8 years (Figures 4-37a-d), which corresponds to the middle and 

to the end of state L (denoted by numbers 7 and 8 in Figure 4-34a), the shifts 

of the separation point become so small that weak recirculations develop near the 

western boundary. At this point, rings form just east of the recirculations, and their 

detachment tends to flatten the front. 

The transition to the high energy state is illustrated by Figures 4-37e-f and 4- 

38a-d, which are snapshots at t = 21, 23.5, 26.1 and 28.7 years (denoted by numbers 

9-12 in Figure 4-34a). The eddy energy partition drops below 10% during this period. 

The size of the recirculations increases from 500 to almost 2000 km, and the ring 

formation process slows down and, at some point, halts. Thus, the model reaches 

the dynamical state associated with large recirculation gyres and very weak eddy 

activity. The spatial structure resembles the antisymmetric steady solution described 

in section 4.2.1. 

However, the energy does not stay in its maxima for a long time. Instead, 

the model trajectory reaches the vicinity of an antisymmetric steady solution and 

then quickly escapes back to the regime where nonlinear eddy-eddy interactions are 

important. This might happen because the model has no mechanism that would 

restore the symmetry of the inflow conditions near the separation point and therefore 

guide the model trajectory towards the fixed point. In the wind-driven models with 

nearly antisymmetric wind-stress curl, the correlation between the wind-stress curl 

and the antisymmetric steady solution might be important in helping the model 

trajectory to reach a closer neighborhood of the fixed point. In agreement with the 

linear stability analysis of Primeau [29], it takes more than 20 years for the instabilities 

to grow and to move the wind-driven model from a high to a medium energy state. 
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Figure 4-35: Contours of instantaneous streamfunction field and potential vorticity 
at time t = 1.3 years (a,b), t = 5.2 years (c,d) and t = 10.4 years (e,f). Time, 
t, is as in Figure 4-34. Parameters: Tin = 16 Sv, Afm = 8 • 1010 m4 secT1 and 
Afm = 3.0 • 10~8 sec-1. The snapshots are presented for the western part of the 
model domain. 
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Figure 4-36: Contours of instantaneous streamfunction field and potential vorticity 
at time t = 13.05 years (a,b), t — 14.35 years (c,d) and t = 15.6 years (e,f). Time, 
t, is as in Figure 
Afm = 3.0 • 10~8 

model domain. 

4-34.   Parameters:  Tin = 16 Sv, Afm = 8 • 1010 m4 sec"1 and 
sec-1. The snapshots are presented for the western part of the 
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Figure 4-37: Contours of instantaneous streamfunction field and potential vorticity 
at time t = 18.2 years (a,b), t = 20.8 years (c,d) and t = 23.5 years (e,f). Time, 
t, is as in Figure 4-34. Parameters: Tin = 16 Sv, Afm = 8 • 1010 m4 sec"1 and 
Afm = 3.0 • 10" 
model domain. 
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Figure 4-38: Contours of instantaneous streamfunction field and potential vorticity 
at time t = 26.1 years (a,b), t = 28.7 years (c,d) and t = 32.6 years (e,f). Time, 
t, is as in Figure 
Afm = 3.0 • 10-8 

model domain. 

4-34.   Parameters:  Tin = 16 Sv, Afm = 8 • 1010 m4 sec-1 and 
sec-1. The snapshots are presented for the western part of the 
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Figure 4-39: Normalized histograms of domain-integrated streamfunction (a, solid) 
and potential vorticity (b, solid) for the reference run. Dashed line denotes histograms 
for the first half of the record, dashed-dotted line denotes histograms for the second 
half of the record. Parameters: Tin = 16 Sv, Afm 

S.O-lO^sec"1. 
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4.4.10    Mass and Potential Vorticity Balances 

Before we describe the mass and potential vorticity balances, let us recall that due to a 

hydrostatic balance and quasi-geostrophic assumptions, mass is given by the domain- 

integrated streamfunction field. The present model does not have special numerical 

procedures which would guarantee conservation of mass and potential vorticity at each 

time step. However, fixed boundary conditions, providing the balance of geostrophic 

inflows and outflows, and the quasi-geostrophic equations of motion, allowing only for 

an order of Rossby number disturbances in the pressure surfaces, permit only small 

deviations in the domain-integrated streamfunction from its original zero value. 

Figure 4-39 shows normalized histograms of the domain-integrated streamfunc- 

tion and potential vorticity fields. Dashed and dashed-dotted lines present similar 

histograms based on the first and the second halves of the time series and indicate 

that the shape of the histograms does not change qualitatively. Therefore, the length 
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of the time series is pretty robust. A straight line fitted to the time series gives slope 

coefficients of 6.1e-10 and l.le-6 for the integrals of the streamfunction and potential 

vorticity fields respectively. Although the realization is finite, the small values of the 

slope coefficients indicate that integrated mass and potential vorticity do not drift 

in time, even though the model has no explicit conservation scheme for any of those 

fields. 

QQPLOTs based on the time series of domain-integrated streamfunction and 

potential vorticity are presented in Figures 4-40a,c. Clearly, there are large deviations 

from a linear function, which indicates that the corresponding distributions are not 

normal. The latter is due to the presence of the low energy state. Figure 4-41 shows 

histograms based on the segments of the original time series of fx Jy ip dxdy and 

/_ /„ q dxdy that were constructed when total energy was either larger than 0.067 

(a high energy state, solid line) or smaller than 0.064 (a low energy state, dashed 

line). The histograms of tp— and q—integrals have normal distributions during the 

high energy period, since the corresponding QQPLOTs are linear (Figures 4-40b,d). 

As we saw earlier, during the high energy state, the flow structure is characterized by 

the well-developed recirculations, and the time mean streamfunction and potential 

vorticity fields are well defined. 

However, during the low energy state, the model displays strong fluctuations 

associated with large meridional excursions in the separation point. Clearly, when 

there is significant northward (southward) excursion, the integrated potential vorticity 

field must be negative (positive). The distributions of ip— and q—integrals during the 

low energy period are not normal, since there is no well defined time mean and since 

there is no preferred flow structure. Therefore, the presence of the low energy state 

is responsible non-normal distribution of the mass and integrated potential vorticity 

time series. 
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Figure 4-41: Normalized histograms of domain-integrated streamfunction (a) and 
potential vorticity (b) for the reference run. Dashed line denotes histograms based 
on the segment of the total time series when total energy level was larger than 0.067. 
Dashed line corresponds to the segments when the total energy level was smaller than 
0.064. Parameters: Tin = 16 Sv, Afm = 8 • 1010 m4 sec"1 and Afm = 3.0 • 10" sec -l 
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4.4.11    Transitions Between High and Low Energy States 

To understand the dynamics of transitions between the high and low energy states, 

the "ensemble average", or composite, time series of the streamfunction field was 

constructed in the following way. First, we identified all the HL (LH) events. Second, 

we chose subjectively a "mean" energy level for all transitions as that at the middle 

of the transition. Third, we extracted 2.5 years of ^-field before and after the model 

reached this energy value. The latter permitted time series of equal lengths for HL 

(LH) events: 

where m is the length of each time series and k = 1, • • •, K is the index of an individual 

event. Third, a "mean" HL (LH) transition time series was constructed as 

{^(ti), V(*2), ••• Htm)}, (4.12) 

where </>&) = if E£=I ^k(ti)- 

Figures 4-42a-b show the "time mean" streamfunction and potential vorticity 

fields calculated from the time-series defined by (4.12) for the HL-transitions. One 

should remember that since transitions are fundamentally non-steady, the term "time 

mean" should be used with caution. The spatial structures of the fields are similar to 

those of the low energy periods; the western boundary currents appear separating 300 

km north and south of the middle of the domain, and weak recirculations are shifted 

eastward. The above mean state does not reflect the true structure of the flow, when 

the interaction of large-amplitude, westward propagating meanders with the western 

wall produces large meridional excursions in the separation point. The structure of 

the time mean perturbation fields (Figure 4-43) reveals that dominant eddy processes 

and conversions occur along the western boundary. 

During the LH-transitions, the symmetry of the inflow near the collision point 

is restored, and the time mean streamfunction and potential vorticity (Figures 4- 

42c-d) are characterized by the 1000-km long recirculating gyres.   The size of the 
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Figure 4-42:   Contours of mean streamfunction and potential vorticity for HL- 
transition (a,b) and LH-transition (c-d). Parameters: Tin = 16 Sv, Afm = 8 • 1010 

m4 sec"1 and Afm = 3.0 • 1(T8 sec"1. 
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Figure 4-43: Time mean perturbation kinetic energy density (a), perturbation po- 
tential energy density (b), barotropic conversion energy density (c) and perturba- 
tion energy dissipation (d) during the HL-transition.   Parameters:   Tin = 16 Sv, 

A dim   = 8 1010 m4 sec- and Aiim = 3.0 • 10~8 sec -l 
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Figure 4-44: Time mean perturbation kinetic energy density (a), perturbation po- 
tential energy density (b), barotropic conversion energy density (c) and perturba- 
tion energy dissipation (d) during the LH-transition.   Parameters:   Tin = 16 Sv, 
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recirculations increases from 500 to 1800 km during the transition events. The max- 

ima in the eddy density fields (Figure 4-44) are aligned with the axis of the jet, and the 

conical shape of the perturbation energy density indicates the importance of rings in 

flattening of the potential vorticity front. The model does not quite reach the steady 

antisymmetric solution, since the amplitude of the eddy field starts increasing when 

the recirculations become large. 

Therefore, the dynamics of transitions from the high to low energy states are 

drastically different from those of the low to high energy transitions. In the first 

case, the eddy field becomes very strong, giving rise to the large amplitude, westward 

propagating meanders, which produce large meridional excursion in the separation 

point and strong northward and southward propagating rings. In the second case, the 

eddy field weakens, and the advection of potential vorticity by the western boundary 

currents restores the flow symmetry by quickly inducing large symmetric recircula- 

tions. Figures 4-45 and 4-46 summarize the energy conversion during the transition 

events. When reading the diagrams, one should remember that the flow is not in 

a steady state during the transition events, and therefore the energy terms do not 

balance each other. Both eddy kinetic and eddy potential energies are of the same 

order of magnitude as the "time mean" flow kinetic energy during the HL-transition. 

The positive sign of the domain-integrated barotropic conversion rate indicates that 

eddy energy grows at the expense of the mean flow energy. During the LH-transition, 

the eddies release energy back to the mean flow, which is associated with the negative 

barotropic conversion integral. 

4.5    Discussion of Nonsymmetric Inflow Conditions 

In this study, we used symmetric inflow and outflow conditions, which were con- 

structed to simulate a boundary with the Sverdrup interior forced by symmetric wind 

forcing.   It would be interesting to see whether low frequency variability and mul- 
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Figure 4-45: Energy diagram for synthetic HL-transition. Parameters: Tin = 16 Sv, 
Afm = 8 • 1010 m4 sec"1 and Afm = 3.0 • 10"8 sec"1. 
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Figure 4-46: Energy diagram for synthetic LH-transition. Parameters: Tin = 16 Sv, 
Afm = 8 • 1010 m4 sec"1 and Afm = 3.0 • 10~8 sec"1. 
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tiple dynamical regimes are still possible if the strength of the inflows through the 

meridional boundaries were not equal. In this case, the model solution might depend 

strongly on the streamfunction and potential vorticity distributions on the eastern 

boundary, as explained below. 

One way to illustrate possible dependence of the model solution on the eastern 

boundary outflow when the meridional inflows are of different strengths is to calculate 

the total potential vorticity input through the model domain. Assume that the flow 

through the southern part of the domain is weaker than that through the northern part 

of the domain, i.e. ips = -aipn, where 0 < a < 1, ips = ip(x,ys) and ipn = i)(x,yn). 

The potential vorticity distribution on the southern boundary, qs = q(x,ys), can 

be then expressed in terms of the potential vorticity distribution on the northern 

boundary, qn = q(x,yn), as 

Qs  =  ßys + -~-J2^s   =   (a-l)ßyn-aqn. (4.13) 

The total potential vorticity input into the model domain is given by 

f_qu.n£l   =    £ [a(a - WvJ^ + (1 - ^)qn ^ 
dx 

dx -       (4.14) 

/     qe-z-dy, 
Jys       oy 

where qe = q(xe,y) and ipe = ip(xe,y) are potential vorticity and streamfunction 

on the eastern boundary, u = (u, v)T is a geostrophic velocity vector on the model 

boundary, fi, and n is a vector normal to the boundary. In the case of symmetric 

inflow conditions, the coefficient a is equal to one, and therefore the first integral of 

the right hand side is zero. If ipe is an odd function, the second integral on the right 

hand side is also zero. Therefore, total potential vorticity input is zero if the inflow 

and outflow conditions are symmetric. This case was of our primary interest. 

For a nonzero a, the value of the first integral is negative. Hence, in order 

for the total potential vorticity flux to vanish, the outflow on the eastern wall has to 

balance potential vorticity input through the meridional boundaries. If the outflow is 
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such that the total q— input is non zero, it may lead to enhanced potential vorticity 

transfer across the middle of the domain, and therefore it might significantly affect 

the interior solution. 

Another reason, why the model might display different behavior, is that steady 

state solutions might change significantly when the inflows are chosen to be nonsym- 

metric. In the present study, we did not attempt to find such solutions. However, 

as we showed for the symmetric inflows, steady state solutions are important for the 

existence of multiple dynamical regimes. Therefore, one might expect that the change 

in the structure of steady solutions might lead to the change in the character and the 

occurrence of multiple states. 

For comparison, McCalpin and Haidvogel [25] showed that for strongly asym- 

metric wind, the reduced-gravity model was not able to reach the high energy state 

and instead stayed in the low energy regime. The absence of the high energy state 

may have been due to "correlation" phenomena (Scott and Straub [34]) between the 

global structures of the wind forcing and the interior solution. In our boundary-forced 

model, such correlations are not possible. Hence, compared to the wind-driven model, 

the colliding jets model might display stronger low frequency variability in the case 

of nonsymmetric inflow conditions, if the steady states are close to each other in the 

phase space. 

4.6    Summary and Discussion 

In this Chapter, we found steady antisymmetric solutions of the reduced-gravity, 

colliding jets model. For a wide range of interfacial friction coefficients, the steady 

flow consisted of an eastward jet flanked by two recirculating gyres. For a set of chosen 

parameters, the zonal extent of recirculations and the total energy level increased with 

a decrease in the interfacial friction coefficient. 
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The initial value technique was used to calculate the exponentially growing 

solutions of the antisymmetric states. The amplitude of the unstable mode closely 

resembled that of the unstable solution of the wind-driven reduced-gravity model of 

Primeau [29] and consisted of four strong cells sitting on the axis of the jet between the 

recirculating gyres and weaker cells in the recirculation regions. The e-folding time 

varied between 4.8 years and 417 days. With the growth in the instability amplitude, 

the linear growth halted due to nonlinear interactions of the cells. That interaction 

led to formation of rings in the area where the jet widens. 

Fully nonlinear calculations showed that with an increase in the value of the 

interfacial friction coefficient, the model became weakly unstable and displayed a 

unique dynamical regime corresponding to an eastward jet with two recirculating 

gyres. For near critical values of the friction coefficient, the eddy field was dominated 

by the eastward and westward propagating meanders of small amplitudes. Rings 

were weak and therefore dissipated during their propagation through the recirculation 

regions. The energy level and the flow structure were close to those of the steady 

antisymmetric solution. 

For smaller values of the interfacial friction coefficient, the increased nonlinear- 

ity led to low frequency variability associated with changes in the zonal extent of the 

recirculating gyres. Formation of strong rings in the area east of the recirculations and 

their subsequent westward propagation through the gyres provided intense potential 

vorticity mixing across the front and in the area of the recirculations. Rings were 

strong enough not to be completely dissipated in the recirculations; upon reaching 

a western boundary, they rejoined the eastward jet. Therefore, the model exhibited 

periods of large recirculations and weak eddy activity, when the model trajectory was 

in the vicinity of the antisymmetric fixed point, and periods of small recirculations 

and strong meander and ring activity. 

With further decrease in the interfacial friction, the model displayed two dis- 

tinct energy states. A high energy state had strong variability associated with well- 
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developed recirculations of various zonal extents described in the above paragraph. 

The low energy state corresponded to a flow regime where the separation point of the 

eastward jet exhibited large meridional excursions. Weak recirculations existed west 

of 1000 km only in the time mean sense. The strong eddy field was dominated by 

large amplitude, westward propagating meanders whose interaction with the western 

boundary current produced strong meridionally propagating rings. In comparison, 

McCalpin and Haidvogel [25] identified three preferred dynamical regimes each with 

a distinct energy level. Although the high and the medium regime resembled the vari- 

ability associated with the high energy state of the regional model, the low energy 

state was quite different from the one of the regional model. This was partly because 

the outflow conditions of the colliding jets model forced the eastward jet to stay 

coherent, and therefore the model never reached the point when the jet disappears 

almost right after separation, as in a low energy state of the wind-driven model. 

For low values of the interfacial friction coefficient, the flow stayed in the 

dynamical regime described as a low energy state in the above paragraph. The 

amplitude of the eddy field was very strong, and small and weak recirculations existed 

only in the time mean sense. 

In a regional colliding jets model, the role of wind forcing was reduced to 

prescribing a particular distribution of streamfunction and potential vorticity on the 

open boundaries. The local nature of such forcing allowed isolating the role of internal 

barotropic dynamics of the jet and its interaction with the western boundary current 

as mechanisms responsible for the existence of low frequency variability and multiple 

dynamical regimes. The numerical experiments with the regional model showed that 

low frequency variability was an inherent part of the dynamics where nonlinearities 

were not too weak or too strong. The presence of the western wall was essential, 

since no low frequency variability or multiple dynamical regimes were observed in a 

barotropic, zonally asymmetric model of Jayne et al [18], which was forced by an 
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unstable zonal jet on the open western boundary and a stable zonal jet on the open 

eastern boundary. 

One of the most important properties of the regional model was a constant 

energy input, which was given by the boundary integrated energy flux vector. In 

comparison, in the wind-driven models, the forcing had global character, and the 

energy input strongly depended on the solution form. Scott and Straub [34] discussed 

a correlation mechanism between symmetric wind-forcing and a geostrophic current 

which led to ability of steady antisymmetric solutions to extract more energy than 

nonsymmetric solutions. The experiments with various wind asymmetry parameter in 

the wind-driven model of McCalpin and Haidvogel [25] showed that for highly asym- 

metric wind forcing, the model was not able to reach high energy states. Since the 

regional model did not have any mechanism that would help to restore the symmetry 

of the solution, it was harder for the model trajectory to reach and to stay in the 

vicinity of the antisymmetric steady solution. 

The reduced-gravity model had only the mechanism of barotropic instability, 

and therefore the question remains whether the presence of baroclinic instability could 

significantly affect low frequency variability. The next Chapter addresses this question 

in a framework of a two layer, colliding jets model. 

In the present study, we used a free slip boundary condition on the western 

boundary. As Berloff and McWilliams [3] showed, the presence of a no-slip boundary 

condition tends to destabilize western boundary currents. Eddies produced by such 

currents can be advected towards the middle of the domain and may interact with 

rings that propagate towards the western wall from the model's interior. Hence, the 

nature of low frequency variability and of multiple dynamical regimes might change 

with the use of no-slip boundary condition due to more complicated dynamics of the 

western boundary current. This problem, however, was not addressed in the present 

thesis. 

176 



Chapter 5 

Results for a Two Layer Colliding 

Jets Model 

5.1    Introduction 

In this Chapter, we present the results of the numerical experiments with a two-layer, 

colliding jets model, which includes the mechanisms of both barotropic and baroclinic 

instabilities. The question is how the latter affects the existence and the character of 

low frequency variability and whether multiple dynamical regimes are still possible. 

As we showed in Chapter 2, baroclinic instability is more efficient than barotropic 

instability in inducing westward flows during the spin down of a quasi-geostrophic, 

two-layer, zonally symmetric jet. In strongly baroclinic flows, it was eddy heat fluxes 

that drove the lower layer recirculations through the residual meridional circulation. 

For strongly barotropic flows, the mechanisms were nonlinear eddy-eddy and eddy- 

mean flow interactions that produced weak westward flows. As we showed in the 

previous Chapter, the dynamics of rings was also crucial for the existence of multi- 

ple dynamical regimes in the reduced-gravity, colliding jets model. The mechanism 

of baroclinic instability associated with the energy transfer from the vertical shear 

to the eddy field might be considered as an additional "degree of freedom" for the 
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two-layer colliding jets model and therefore may substantially affect the character of 

the low frequency variability and the existence of multiple dynamical regimes. 

The formulation of the model and its governing equations are presented in sec- 

tion 3.2.1. The dissipation terms are given by Vx = -.A6V
6i/>i and V2 = -A2V

2ip2 - 

AV6^2, where A% is a biharmonic diffusion coefficient and A2 is a bottom friction 

coefficient. 

5.2    Comments on Strong Bottom Friction 

As we shall see, bottom friction in the two-layer model physically plays an opposite 

role to that of interfacial friction in the reduced-gravity model; as bottom friction 

increases, the upper layer flow behaves as that of the reduced-gravity model with weak 

interfacial friction. The physics can be illustrated by the following scaling argument. 

Suppose that bottom friction is strong in the two-layer model, and therefore the 

amplitude of the lower layer streamfunction, ip2, is small. Assume also that the lower 

layer depth is large, so that the lower layer Froude number is small. With the above 

assumptions, the dominant balance in the lower layer potential vorticity equation is 

between the time changes in the upper layer streamfunction and the bottom friction 

operator applied to the lower layer streamfunction: 

dib\ „ 
F2-^ A2V

2fa. (5.1) 

Rewriting the upper layer potential vorticity field as III ~ ßy + VVi - Wi, the 

governing equation for the upper layer flow becomes: 

dlli pp. 
-gf + J(A,Tli) ~ -AeV6ip1+S1+A2-1{F1F2V-2j^}ip1. (5.2) 

The last term in the above equation appears as frictional forcing exerted by the lower 

layer flow on the upper layer flow. The bottom friction coefficient enters with the 

power of -1, which indicates that with an increase in A2, the upper layer flow dy- 

namics becomes similar to that of a reduced-gravity model with nonzero interfacial 
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friction. This explains why for large values of the bottom friction coefficient, the 

dynamical regimes of a time-dependent two-layer model, described in the following 

section, closely resemble those of a reduced-gravity model with weak interfacial fric- 

tion. 

5.3    Sensitivity Study vs Bottom Friction Coeffi- 

cient 

Case: a  = 0 

The behavior of the two-layer model was investigated with a set of various bottom 

friction parameters. Table 5.1 classifies the resulting state vs A2 for the case when the 

lower layer inflow velocity was chosen zero, so that the model was forced only through 

the upper layer inflow and outflow conditions. In all the cases, with an increase in the 

values of the bottom friction coefficient, the model showed the following progression 

of states: 

• State A. The model has a unique dynamical regime when the flow consists of 

the large upper layer recirculations and smaller, eddy-driven lower layer recir- 

culations. The total energy varies by only 3%, which indicates weak variability 

associated with changes in the meridional position of the front and in the lon- 

gitudinal extent of both the upper and the lower layer recirculating gyres. The 

example of the mean streamfunction field is given in Figure 5-5a,c. The detailed 

discussion of the state is given in section 5.4. 

• State B. The upper layer flow structure consists of an eastward jet and two 

recirculating gyres. The flow in the lower layer is weak because of stronger bot- 

tom friction. The longitudinal size of the recirculations changes with time thus 

giving rise to strong low frequency variability. The latter displays itself in up to 

16% deviations of the total energy from its mean value. The amplitude and the 
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spatial structure of the eddy field are strongly time-dependent. The upper layer 

eddy field is characterized by the eastward and westward propagating meanders. 

Their interactions give birth to rings in the area east of the recirculation gyres 

in the upper layer. The example of a typical time mean streamfunction field is 

given in Figure 5-1, when A2 = 5-10-6 sec-1. 

• State C. The flow structure displays well-developed low frequency variability 

associated with two dynamical regimes: high energy state B or low energy state 

D. 

• State D. The upper layer flow is characterized by an eastward jet with large 

meridional excursions in the separation point. The corresponding eddy field 

is dominated by large-amplitude, westward propagating meanders and strong 

rings forming only on the western boundary. The recirculations are absent 

in instantaneous fields. The lower layer flow is characterized by two counter- 

recirculations that are very weak and are strongly frictional. The example of a 

typical time mean streamfunction field is given in Figure 5-1, when A2 = 5-10-5 

sec-1. 

The next section presents the detailed analysis of a reference run with State 

A, when A2 = 10-8 sec-1. In states B, C and D, the lower layer flow is strongly 

frictional, and hence these cases are of not much interest. In terms of the upper layer 

dynamics, States B, C and D of the two-layer model correspond to States D, E, F of 

the reduced-gravity model. Figure 5-3 shows instantaneous streamfunction fields for 

state C, when A2 = 7.5 • 10~6 sec-1. Clearly, the upper layer flow structure suffers 

significant changes with time. When the energy is high, the flow is characterized by 

large upper layer recirculations. As the recirculations decrease in size, the strength 

of the eddy field increases, giving rise to larger amplitude meanders and rings. When 

the energy is low, the flow is dominated by large amplitude, westward propagating 

meanders and strong rings forming on the western boundary. 
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Afm (sec-1) STATE 
1.0 • 10~8 A 
2.0 io-8 A 
3.0 lO"8 A 
5.0 io-8 A 
1.0 IO"7 A 
8.0 io-7 B 
1.0 10~6 B 
3.0 io-6 B 
5.0 io-6 B 
7.5 io-6 C 
1.0 10~5 C 
3.0 10~5 D 
5.0 io-5 D 

Table 5.1: Flow character for various dimensional bottom friction coefficients, when 
the lower layer inflow is zero, i.e. a = 0. 

Case: a 0.1 

Table 5.2 classifies the flow regimes for the case when the lower layer inflow stream- 

function was 10 times weaker than the corresponding upper layer inflow streamfunc- 

tion, i.e. a = 0.1. Figure 5-4 shows time mean streamfunction fields for both layers. 

For small values of bottom friction parameter, the flow was characterized by large re- 

circulations in the upper layer and small recirculations in the lower layer either pressed 

against the western boundary currents or located north and south of the eastward 

jet. There was not much low frequency variability in this case. For larger values of 

the bottom friction coefficient, the western boundary current separated earlier from 

the wall, giving rise to a wide, frictional eastward flowing jet. The upper layer flow 

with large recirculations showed strong low frequency variability associated with two 

dynamical regimes as described earlier. 
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Afm (sec-1) STATE 
1.0 -Kr8 A 
1.0-10~7 A 
5.0 • 10-7 C 
i.o-io-6 C 
5.0-10-6 C 

Table 5.2: Flow character for various dimensional bottom friction coefficients, when 
the amplitude of the lower layer inflow streamfunction is 10% of that of the upper 
layer inflow streamfunction, i.e. a = 0.1. 

Steady Solutions 

An attempt to find the antisymmetric steady solutions of the two-layer model by using 

a numerical code with enforced antisymmetry failed. The resulting statistically steady 

solutions were characterized by recirculating gyres that reached the sponge layer near 

the eastern wall. The total energy never attained a steady state due to the presence 

of a nonzero antisymmetric eddy field. In the original time-dependent model without 

artificial antisymmetry, the zonal extent of the recirculating gyres varied between 500 

km and 2500 km depending on the value of the bottom friction coefficient. 

The numerical experiments with the reduced-gravity, colliding jets model in 

Chapter 4 showed that biharmonic diffusion was not effective in dissipating energy, 

and therefore interfacial drag was required to reach a statistically steady solution. In 

the present two-layer model, the upper layer has only biharmonic diffusion, which may 

explain the absence of a steady antisymmetric solution with a reasonable zonal extent 

of the recirculating gyres. Therefore, the presence of bottom friction in the lower layer 

and the time-dependence of the upper layer potential vorticity field are required for 

the existence and maintenance of the observed statistically steady state. Perhaps, the 

model could have had steady antisymmetric solutions if a different frictional operator, 

such as lateral diffusion, were applied. 
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It is unclear whether the model has other, asymmetric, steady states; this 

problem is beyond the scope of the present thesis. One may argue that, if they 

exist, the model might display multiple dynamical regimes. However, when both 

barotropic and baroclinic instabilities are present, the model dynamics becomes more 

complicated, and the steady states might not be useful in describing the behavior 

of system. State A can be considered as a strange attractor of a quasi-geostrophic, 

turbulent, two-layer model with weak bottom friction. As we show in the next section, 

in this parameter regime, the model does not have multiple dynamical states, but 

instead it is characterized by only one dynamical regime with weak low frequency 

variability. 

5.4    Reference Run 

5.4.1    Dimensional Parameters 

The reference run for the two layer model has the following dimensional parameters: 

L = 2400 km, 

Lx = 4667 km, 

Ldef = 47.64 km, 

Afm = 8 • 1010 m4sec-1, 

Afm = 1 • 10-8 sec-1, 

Di = 600 m, 

D2 = 4000 m, 

U = 1 m sec-1. 

The initialization procedure discussed in section 3.2.9 was used to prescribe the 

boundary distributions (3.4) and (3.5) of the streamfunction field and its derivatives. 
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Figure 5-1: Upper layer (a) and lower layer (b) time mean streamfunction field, when 
a = 0 and A2 = 5 • 10~6 sec-1. 
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Figure 5-2: Upper layer (a) and lower layer (b) time mean streamfunction field, when 
a = 0 and A2 = 5 • 10-5 sec-1. 
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Figure 5-3: Instantaneous upper layer streamfunction (left column) and corresponding 
lower layer streamfunction (right column), when a = 0 and A2 = 5 • 10-5 sec-1. The 
structure of the flow changes between a state with well developed recirculations in the 
upper layer and a weakly-meandering jet to a state with no upper layer recirculations 
and large amplitude, westward propagating meanders. 
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Figure 5-4: Upper layer (a,c,e,g) and lower layer (b,d,f,h) time mean streamfunction 
field, when A2 = 10-8 sec-1, A2 = 10-7 sec-1, A2 = 5 • 10~7 sec-1, and A2 = 5 • 10~6 

sec-1 respectively. Lower layer inflow in nonzero: a = 0.1. 
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The nondimensional amplitude of the inflow was chosen as Ri = 1 for the upper layer 

and R2 = 0 for the lower layer. Hence, the energy input into the model domain was 

only due to the upper layer inflow, and the main dissipation mechanism was provided 

by bottom friction. Since the interfacial drag was zero, the circulation in the lower 

layer was induced due to horizontal transfer of heat by the eddy fluxes. 

The model was spun up for 30 years, until a statistically steady state was 

reached. An additional 424 years of integration allowed collection of the necessary 

statistics. 

5.4.2    Time Mean Flow 

As shown later, the model has one preferred energy state associated with a unique 

dynamical regime. Figure 5-5 shows the time mean fields of streamfunction and po- 

tential vorticity. The upper layer flow is characterized by two symmetric recirculating 

gyres, which are 2000 km long and 400 km wide. The time mean potential vorticity 

field reveals two regions of anomalous potential vorticity indicating waters brought 

by the western boundary currents from the north and south into the recirculation 

area. The upper layer recirculations are also well-defined in the instantaneous fields. 

The lower layer flow has a more complicated spatial structure. There are two 

tight recirculations, 2000 km long and 200 km wide, in the middle of the domain. 

Two weak counter-rotating gyres are located to the north and south of the recircu- 

lations. The time-mean flows in the lower layer are driven by the eddy heat fluxes, 

and therefore they exist only in the time mean sense; the instantaneous fields are 

dominated by strong eddies. Outside the recirculation regions, the lower layer poten- 

tial vorticity field is dominated by its planetary component, whereas in the area of 

the recirculations it is homogenized. Therefore, near the edges of the eastward jet, 

the time mean recirculations have the same sense of rotation in the upper and lower 

layers, whereas further south and north the time mean lower layer gyres rotate in 

the opposite direction to the upper layer flows, creating a region of strong baroclinic 

188 



2000 

a. o z 
i 

X 
h- 

o 

1500 

1000 

500 

0       1000    2000    3000    4000 
WEST - EAST DISTANCE ( KM ) 

0       1000    2000    3000    4000 
WEST - EAST DISTANCE ( KM ) 

0       1000    2000    3000    4000 
WEST - EAST DISTANCE ( KM ) 

0       1000    2000    3000    4000 
WEST - EAST DISTANCE ( KM ] 

Figure 5-5: Contours of upper (a,b) and lower (c,d) layer streamfunction and potential 
vorticity fields. Parameters are defined in section 5.4.1. 

189 



flow. The average total transport by both recirculations is about 40 Sv, partitioned 

between 16 Sv in the lower layer and 24 Sv in the upper layer. 

5.4.3    Energetics 

The histograms (Figure 5-6) based on the time series of kinetic, potential and total 

energy indicate that the model has a unique energy state. To see whether the dis- 

tributions are normal, a MATLAB QQPLOT routine was used to plot the quantities 

of a given time series versus the quantiles of the generated time series with normal 

distribution (Figure 5-7). The upper layer kinetic energy and potential energy time 

series are close to normal distribution. The tails of the lower layer kinetic energy 

time series do not fall within the error bars and therefore indicate significant devia- 

tion from normal distribution. The latter may be the result of the presence of strong 

vortices in the flow structure. 

On average, total energy is partitioned between 87% potential, 9% upper layer 

kinetic and 4% lower layer kinetic energy. Therefore, the time series of total and 

potential energy are well correlated. Computed by using a MATLAB SPECTRUM 

routine with a hanning window of 20 and 100 years, the potential energy power density 

spectrum (Figure 5-8) is red with a distinct change in the slope at approximately 

2 months. There is a distinct peak at approximately 1.4 years. Another peak is 

associated with a time scales larger than 10 years. Hence, similar to the reduced- 

gravity model, the two-layer model exhibits low frequency variability. However, there 

is only one dynamical regime in the model, and it is associated with large recirculating 

gyres in the upper layer and with smaller eddy-driven gyres in the lower layer. 

Peaks in the upper and lower layer kinetic energy spectrum (Figure 5-9) are 

located on the time scale of 1.4 years. The lower layer kinetic energy has a con- 

stant slope at time scales less than 1.4 years, whereas the upper layer kinetic energy 

spectrum changes the slope at 2 months. The latter must be related to the internal 

instability time scale. 
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Figure 5-7: The quantile-quantile plot for various time series (solid lines) vs normal 
distribution, (a): upper layer kinetic energy, (b): lower layer kinetic energy, (c): 
potential energy. Dashed line denotes error bars. Parameters are defined in section 
5.4.1. 

Figure 5-10 summarizes the domain-integrated time mean energy conversion 

in the model. The energy input into the model domain is due to the upper layer 

inflows. The dissipation is provided through biharmonic diffusion and sponge ab- 

sorption in both layers and through bottom friction. 57% of energy is dissipated 

through perturbations and 42% is dissipated by the mean flow. Total perturbation 

energy is almost equally partitioned between K[, K'2 and P'. The mean flow energy 

is partitioned between 91% of potential energy and 8% and 1% of upper and lower 

layer kinetic energy. In the domain-integrated sense, the barotropic conversion term 

is two orders of magnitude larger than the baroclinic conversion term. The bulk of 

barotropic conversion occurs in the upper layer, since the integral of BTC in the lower 

layer is less than 1% of the total value. Berloff and McWilliams [4], in their two-layer 

wind-driven model with symmetric forcing and lateral diffusion, also observed strong 

barotropic dominance, when the flow stayed in the regime of strong jet penetration 

and large antisymmetric recirculations.   In the wind-driven, double-gyre model of 
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are defined in section 5.4.1. 
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are defined in section 5.4.1. 
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Holland [15], the baroclinic conversion term was also two orders of magnitude smaller 

than the barotropic conversion one in the experiment with small lateral diffusion. 

5.4.4    Time Mean Eddy Fields 

Figure 5-11 presents the energy density of the mean and eddy fields. The maxima in 

the upper layer mean kinetic energy are aligned with the eastward jet west of 2500 

km and with the colliding western boundary currents. The lower layer mean kinetic 

energy has three maxima: one on the axis of the jet east of 2000 km and the other two 

in the region of the recirculating gyres. Two pools of maximum mean potential energy 

are associated with the recirculating gyres. Both perturbation potential energy and 

upper layer perturbation kinetic energy have maxima on the axis of the jet, which 

reflects the importance of meanders in the dynamics of the flow. The lower layer 

perturbation kinetic energy has two maxima in the western part of the recirculating 

gyres and along the western wall. 
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Figure 5-12: Energy level (in %) for different eigenmodes resulted from an extended 
EOF analysis for a streamfunction fields, where time scales smaller than 10 years 
were filtered out. Dashed line denotes a 95% energy level. 

5.4.5    EOF Analysis of Low Frequency Variability 

To understand the nature of low frequency variability appearing as a wide peak on 

the time scales greater than 10 years in the potential energy spectra, an extended 

spatial Empirical Orthogonal Function (EOF) decomposition was performed for a 

sub-domain where the variability was maximum: 2917 km x 1312 km centered near 

y = 0. The streamfunction fields were first interpolated on to a regular grid of 32 x 32 

points corresponding to the above sub-domain (the interpolation grid was different 

from the model grid). Second, a finite impulse response filter was applied to the 

time series to exclude time scales smaller than 10 years. Fourteen spatial EOFs were 

required to reach a 95% energy level (Figure 5-12). 

The first EOF is symmetric in both layers with a variance accounting for almost 

45% of the total energy level. The corresponding spatial structure of the mode and 

its amplitude are shown in Figures 5-13a-c. The mode structure indicates variability 

associated with either northward or southward shifts in the position of the upper layer 

jet axis in the area between the recirculating gyres. The position of the separation 

point is fixed in the middle of the domain, which leads to the jet flowing either in the 
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north-eastward or in the south-eastward directions after separation from the western 

boundary. In the lower layer, the mode tends to perturb the front near the separation 

point and to strengthen either the southern or northern recirculations. The spectrum 

of the time-dependent amplitude indicates a wide maximum on the time scales larger 

than 10 years with a slow decay towards smaller frequencies. Longer time series is 

required to isolate the variability on the scale close to 100 years. 

The other 50% of the 95%-energy level are partitioned between thirteen EOFs, 

with the second and the third one accounting for 10.6% and 10.3% respectively (Fig- 

ures 5-13d-i). The spatial structure of the second mode indicates variability in the 

area where the jet splits; it is associated with either southward and northward excur- 

sion of the front and with "wrapping" of the recirculations around each other. In the 

lower layer, the second mode tends to increase the longitudinal extent of one of the 

recirculations and decrease that of the other one. Also, it perturbs the front near the 

separation point. 

When the amplitude of the third EOF-mode is positive, the upper layer re- 

circulations tend to increase in their longitudinal extent, and the front has a weak 

north-west to south-east slope. In the lower layer, the symmetry of the flow breaks, 

since western part of the northern recirculation and the eastern part of the southern 

one tend to weaken. When the amplitude is negative, the upper layer recirculations 

shrink in zonal direction, and the slope of the front is from south-west to north-east. 

The lower layer recirculations appears weakened in the eastern part for the northern 

one and in the western part for the southern part. 

A similar EOF decomposition based on a streamfunction time-series with vari- 

ability larger than 20 years filtered out require ten EOFs for the 95% total energy 

level, with the most energetic mode having a 58% energy level. The spatial structure 

and the amplitude of the most important EOFs compare well with those based on a 

10-year low-pass filter. 
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5.4.6    EOF Analysis of High Frequency Variability 

Inter-annual Variability 

To study the inter-annual variability of the model, we performed an EOF analysis for 

the following two streamfunction time series. One was band-passed filtered for the 

variability between 1 and 10 years and the other one for the variability between 1 

and 2 years. In both cases, the most important EOFs were remarkably similar, and 

the number of modes required for the 95% energy level was very close: 28 and 25 

respectively. Therefore, most of the inter-annual variability is on the scales between 

1 and 2 years, which is supported by the energy spectra plots of section 5.4.3. Thus, 

here we present the results of only the second EOF decomposition. 

Figure 5-14 shows variance associated with 25 EOFs required for the 95% 

energy level with the first three functions having 17%, 14% and 11% energy levels 

respectively (for comparison: for the time series filtered between 1 and 10 years, the 

first three EOFs had 11%, 10% and 8% energy levels). The spectra of the time- 

dependent amplitude and the corresponding spatial structure are presented in Figure 

5-15. All modes are clearly associated with the meanders of approximately 1000 km 

length scale. The peak in amplitude spectra is around 1.3 years. 

Intra-annual Variability 

To study the inter-annual variability of the model, we performed an EOF analysis for 

the following two streamfunction time series. One was band-passed filtered for the 

variability between 1 and 12 months and the other one for the variability between 5 

and 12 months. In both cases, the most important EOFs were remarkably similar. 

Here we present the results of only the second EOF decomposition. 

Total of 35 modes required to reach the 95% energy level. The first three 

EOFs accounted for 24%, 18% and 9% of the total energy level. Their amplitude and 

spatial structures are presented in Figure 5-17. The modes are symmetric wave-like 
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Figure 5-14: Energy level (in %) for different eigenmodes resulted from an extended 
EOF analysis for a streamfunction with variability band-passed between 1 and 2 
years. Dashed line denotes a 95% energy level. 

structures sitting on the axis of the upper and the lower layer jet. The length scale 

of the modes, decaying west of 2000 km, is approximately 1000 km. The frequency 

multiplied by the power density spectrum of the time-dependent amplitude shows a 

peak at 8-9 months for all three modes. Therefore, the first three modes account 

for 51% of energy and are responsible for the variability on the time scales around 9 

months. The other modes are each less energetic, but together they account for the 

remaining 44% of the total energy level. 

5.5    The Role of Baroclinic Instability in Low Fre- 

quency Variability 

5.5.1    Method 

To study the role of baroclinic instability in low frequency variability, we employed a 

statistical method based on the approach of Davis and Emanuel [7]. Applied to the 

time series of the streamfunction fields, the method allows to define zones of baroclinic 
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Figure 5-16: Energy level (in %) for different eigenmodes resulted from an extended 
EOF analysis for a streamfunction with variability between 5 and 12 months. Dashed 
line denotes a 95% energy level. 

growth in the time average sense. At each time step, the streamfunction and potential 

vorticity fields are decomposed into a time mean flow and perturbations: 

il>i{x,y,t) = Ä{x,y) + ^'i(x,y,t) (5.3) 

and 

qi{x,y,t)  = qi(x,y)+q'i(x,y,t), i = 1,2. (5.4) 

The perturbation streamfunction is further rewritten as a sum of a field associated 

with the upper layer potential vorticity anomaly and a field associated with the lower 

layer potential vorticity anomaly, i.e. 

(5.5) 

where ip^ is the solution of the problem: 

' (V2 - Fx)4
l) + Fx^ = Qv 

and ißt    is the solution of the problem: 

(v2-wi2) + *i42) = o, 
(V2 - FM?] + F21P? = 4 

i>\ = # + #,* = 1,2 

(5.6) 

(5.7) 
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The linearized perturbation enstrophy equations then can be rewritten as: 

r)    '2 

ÖIY + 9iüi • V<?; + q[n? • V?! + q[u? ■ Vq,  =  g^, (5.8) 

o     '2 

n|^y + ?2Ü2 • V?2 + g2u2
1} • Vq2 + 92u2

2) • Vq2 = q'2D2, (5.9) 

rri 

where u^ = (—£—, -|jr- ) is a geostrophic velocity field. Zones of baroclinic 

growth are defined by (a;, y) where both of the following constraints are satisfied: 

tivt? ■ Vqx) < 0, m   ' U (5.10) 
(?2U21)-V?2)<0) 

where (•) denotes time average. These inequalities can be interpreted as conditions for 

an increase in perturbation enstrophy due to a down-gradient eddy potential vorticity 

flux produced by the potential vorticity anomaly in the other layer. 

5.5.2    Applications 

The above method was applied for two different values of the bottom friction coeffi- 

cient: A2 = 10-8 sec-1 and A2 = 3 • 10-6 sec-1. Figure 5-18a shows that in the 

first case, there are two regions of baroclinic growth located in the area of westward 

recirculations accompanied by other two small zones north and south of where the 

jet splits. As was shown in the previous sections, for a given value of bottom friction 

coefficient, the total energy varies by less than 3% from its mean value, and the low 

frequency variability, although present, is weak. 

For A2 = 3 • 10-6 sec-1, small zones of baroclinic growth are located on the 

most western and eastern edges of the recirculations, where the flow becomes pre- 

dominantly meridional. The total energy level varies by 16%, and the low frequency 

variability is strong. 

Therefore, for small values of the bottom friction parameter, the presence of 

baroclinic instability in the recirculation area reduces the strength of low frequency 
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variability. In these experiments, multiple dynamical regimes do not occur when 

baroclinic instability is present in the recirculation region. 

5.6    Summary and Discussion 

In Chapter 5, we described the results of the numerical experiments with a two-layer, 

colliding jets model which showed strong dependence of the flow structure on the 

bottom friction parameter. For small bottom friction, which implied a physically rel- 

evant lower layer flow, the model stayed in a unique dynamical regime associated with 

the well-developed recirculations in both layers. To understand the nature of low and 

high frequency variability observed in the model, an extended spatial EOF analysis 

was performed for filtered streamfunction fields. The low frequency spatial EOFs 

were found to explain decadal and longer variability in the position of the eastward 

jet axis, as well as weak wrapping and zonal pulsations of the recirculation gyres. For 

quasi-annual and mesoscale variability, the EOF analysis showed the importance of 

wave-like structures sitting on the axis of the jet between the recirculating gyres with 

the length scale of 1000 km and the time scale of 8 to 9 months. 

For large values of the bottom friction coefficient, the lower layer flow became 

strongly frictional, and the recirculations disappeared. However, the dynamics of 

the upper layer flow became more complicated displaying both multiple dynamical 

regimes and low frequency variability which closely resembled those of the reduced- 

gravity model with weak interfacial friction. Such similarity between the reduced- 

gravity and the two-layer models was possible because of the forcing provided by the 

lower layer flow on the upper layer flow and associated with strong bottom friction. 

The results of the two-layer calculations showed that for physically feasible 

values of the bottom friction coefficients, the presence of baroclinic instability in 

the recirculation area prohibited the existence of multiple dynamical regimes. How- 

ever, weak low frequency variability associated with changes in the structure and the 
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Figure 5-18: Zones of baroclinic growth for A2 = 10 8 sec 1 (a) and A2 = 3-10 
sec-1 (b). White contours show upper layer time mean streamfunction field. 
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strength of the recirculating gyres was still possible. In contrast with the reduced- 

gravity case, where steady antisymmetric solutions helped to understand the exis- 

tence and the structure of a high energy state and the associated dynamical regime, 

an attempt to find steady antisymmetric solutions by employing a two-layer model 

with enforced antisymmetry failed. In disagreement with the original time dependent 

model, where the zonal extent of the recirculations varied between 500 km and 2500 

km, the recirculations reached all the way to the eastern sponge layer, and the flow 

was characterized by a statistically steady nonzero antisymmetric eddy field. There- 

fore, the total energy level never reached a steady state. One of the reasons why 

the antisymmetric steady state did not exist may be that the upper layer dissipation 

mechanism was presented only by biharmonic diffusion, which is not efficient at dis- 

sipating energy. Therefore, the balance between the nonlinear terms and dissipation 

was not possible, and time variability was essential. The use of lateral diffusion might 

have resulted in existence of steady antisymmetric solutions. However, the question 

still remains whether the corresponding steady states would have been relevant to the 

behavior of the time-dependent model. As the system becomes progressively more 

complex, as in the case with both barotropic and baroclinic instability at work, the 

model might become purely turbulent, and the resulting dynamical state may be a 

strange attractor for a given parameter regime. 

In contrast, in the two-layer, wind-driven, quasi-geostrophic model by Berloff 

and McWilliams [4], rare transitions between three distinct dynamical states were 

possible. Compared with a corresponding reduced-gravity, wind-driven model, the 

presence of baroclinic instability weakened and regularized low frequency variability. 
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Chapter 6 

Conclusions 

This thesis studies the problems of generation and maintenance of recirculations by 

the Gulf Stream instabilities using two approaches. The first examines the develop- 

ment of recirculations during the spin down of a zonally symmetric, unstable, quasi- 

geostrophic jet. The second studies the problem of existence and maintenance of low 

frequency variability and of multiple dynamical regimes due to the mechanisms of 

barotropic and baroclinic instabilities. 

Chapter 2 addresses the first problem in a framework of the reduced-gravity 

and the two-layer doubly-periodic, quasi-geostrophic models. The recirculations are 

robust features of a two-layer model, which includes the mechanisms of both baroclinic 

and barotropic instabilities. The relative strength of the recirculations, defined as 

the ratio of the total westward to the total eastward transport, is a function of the 

nondimensional parameters of the model. It decreases as the value of nondimensional 

ß increases. This decrease in the recirculation strengths is due to a decrease in 

the zone of homogenized potential vorticity, which in turn is due to (approximate) 

enstrophy conservation. 

When ß, 7 and total energy level are fixed, the strength of the recirculations is 

maximum for strongly baroclinic flows and minimum for intermediate values of a baro- 

clinic parameter, F"'~p2
u , where Ui is i—th layer nondimensional velocity amplitude 
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and Fi is i-th layer Froude number. In strongly baroclinic cases, eddies marginally 

equilibrate the flow and create a wide zone of homogenized potential vorticity in the 

lower layer. This result is in agreement with the study of a weakly-nonlinear equili- 

bration of Phillips' model with weak dissipation (Pedlosky [28]). In the upper layer, a 

positive potential vorticity gradient on the axis of the jet decreases by less than 10%, 

thus appearing as an efficient barrier to mixing. Most vigorous mixing occurs on the 

edges of the jet in the upper layer and under the axis of the jet in the lower layer. 

As the initial basic jet becomes more barotropic, a positive potential vorticity 

gradient develops on the axis of the jet in the lower layer, reflecting a more stable 

flow structure. In strongly barotropic jets, there is vigorous mixing both across the 

positive potential vorticity gradient and on the edges of the jet, leading to a decrease 

by more than 45% in the value of the upper layer potential vorticity gradient on the 

axis of the jet. 

The linear stability analysis applied to the two-layer jets shows that in strongly 

baroclinic cases, the lower layer recirculations are driven by the eddy heat fluxes 

through the residual meridional circulation. In the upper layer, the divergence of eddy 

potential vorticity fluxes tends to simply "diffuse" the jet during the stage of linear 

growth. Nonlinear eddy-eddy and eddy-mean flow interactions are further important 

in inducing the upper layer recirculations. The linear analysis shows that the strength 

of the residual meridional circulations increases with an increase in the width of basic 

flow. That is why a "mean flow" model (Flierl, personal communication) successfully 

reproduces recirculations when applied to strongly baroclinic basic flows. 

For strongly barotropic two-layer basic flows, which are strongly supercritical, 

the linear eddy potential vorticity fluxes tend to diffuse the jet in both layers without 

any tendency for the formation of westward flows on the flanks. As the basic flow 

becomes wider, it stabilizes. Therefore, strongly nonlinear regimes, which allow for 

both eddy-mean flow and eddy-eddy interactions, are required for the emergence of 

recirculations for strongly barotropic basic flows. 

210 



Thus, although the recirculations develop in a two-layer model for both barotropic 

and baroclinic flows, the processes leading to their generation are different. In baro- 

clinic case, eddy-mean flow interaction is powerful enough to drive the recirculations. 

In barotropic cases, strongly nonlinear eddy-mean flow and eddy-eddy interactions are 

required for the development of recirculations. The existence of two different mecha- 

nisms is responsible for a non-monotonic dependence of the recirculation strength on 

the baroclinic parameter in the nonlinear experiments. 

In the reduced-gravity model, which has the mechanism of barotropic instabil- 

ity only, recirculations form as a result of a nonlinear spin down of an unstable basic 

flow only for the case of an infinite dimensional deformation radius. For deformation 

radii smaller than 65 km, the total westward transport is less than 5% of the total 

eastward transport. 

The results of the linear stability analysis are misleading since they imply a 

weak tendency for the formation of the recirculations for small dimensional deforma- 

tion radii and the absence of the recirculations for an infinite dimensional deformation 

radius. The linear stability analysis is not helpful since the basic flow is only slightly 

supercritical for large 7, implying a weak eddy field. 

The second part of the thesis examines the problem of existence and mainte- 

nance of low frequency variability and of multiple dynamical regimes as the result of 

barotropic and baroclinic instabilities. 

Chapter 3 presents the formulation of a quasi-geostrophic, colliding jets model 

which is forced by prescribed inflow and outflow through the open boundaries. The 

geometry and the amplitude of such boundary forcing is important for the resulting 

structure of a time-dependent solution. The inflow consists of two thin jets enter- 

ing the domain from the north and the south and flowing along the closed western 

boundary. After colliding in the middle of the domain, the western boundary cur- 

rents give rise to an eastward flowing jet that leaves the domain through the eastern 

boundary. A free slip boundary condition is applied on the western boundary, which 
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tends to suppress local instabilities of the western boundary currents. The presence 

of the western wall and western boundary currents is crucial for the the existence of 

multiple dynamical regimes. 

The model has two types of friction: biharmonic diffusion and interfacial drag 

in a reduced-gravity formulation and biharmonic diffusion and bottom drag in a two- 

layer formulation. In addition, the sponge layers located along the open boundaries 

allow the absorption of the outgoing radiation and provide a smooth transition be- 

tween the interior solution and the boundary conditions. 

Although negligible in the local potential vorticity balance of the recircula- 

tion regions, the wind is nevertheless important for the existence and maintenance 

of multiple dynamical regimes in the wind-driven models. First, the model energy 

input, defined as the domain-integrated streamfunction multiplied by the wind-stress 

curl, is time-dependent. When the nonlinear interactions are at work, the correlation 

between the spatial structures of the wind-stress curl and the solution can help the 

model trajectory to reach a linear neighborhood of an antisymmetric fixed point and 

therefore to lead the model towards a high energy state. Second, the potential vortic- 

ity input into various water masses, such as the recirculations, depends strongly on the 

structure of the solution. For nonsymmetric solutions, where one of the recirculations 

is wrapping around the other one and is crossing the line of zero wind-stress curl, the 

potential vorticity forcing integrated over a closed streamline decreases in absolute 

values compared to that of the antisymmetric solutions. Thus, in the wind-driven 

models, there are two possible sources of low frequency variability: wind forcing and 

instability mechanisms. 

The colliding jets model is highly idealized, however, it isolates the important 

mechanisms of instability: barotropic in a reduced-gravity case and both barotropic 

and baroclinic in a two-layer case. The model differs from the wind-driven ones in that 

the energy input due to inflow through the open boundaries is time-independent. The 

boundary forcing does not act directly in the recirculation region and has no mecha- 
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nisms that would locally restore the symmetry of the solution structure. Therefore, 

the observed high energy states are more transient than those in the wind-driven 

cases with symmetric wind. 

Chapter 4 reports the results of the numerical experiments with the reduced- 

gravity, colliding jets model. For a wide range of interfacial friction coefficients, 

steady antisymmetric solutions of the reduced-gravity, colliding jets model consist of 

an eastward jet flanked by two recirculating gyres. For a set of chosen parameters, 

the zonal extent of recirculations and the total energy level increase with a decrease 

in the interfacial friction coefficient. 

The initial value technique was used to calculate the exponentially growing 

solutions of the antisymmetric states. The amplitude of the unstable mode closely 

resembles that of the unstable solution of the wind-driven reduced-gravity model of 

Primeau [29] and consists of four strong cells sitting on the axis of the jet between 

the recirculating gyres and weaker cells in the recirculation regions. The e-folding 

time varies between 4.8 years and 417 days. The linear growth in the perturbation 

amplitude halts when the nonlinear interactions of the cells become strong. These 

interactions lead to formation of rings in the area where the jet widens. 

Fully nonlinear calculations show that with an increase in the value of the 

interfacial friction coefficient, the model becomes weakly unstable and displays a 

unique dynamical regime corresponding to an eastward jet with two recirculating 

gyres. For near critical values of the friction coefficient, the eddy field is dominated by 

eastward and westward propagating meanders of small amplitudes. Rings are weak 

and therefore dissipate during their propagation through the recirculation regions. 

The energy level and the flow structure are close to those of the steady antisymmetric 

solution. 

For smaller values of the interfacial friction coefficient, the increased nonlin- 

earity leads to low frequency variability associated with changes in the zonal extent 

of the recirculating gyres. Formation of strong rings in the area east of the recircula- 
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tions and their subsequent westward propagation through the gyres provides intense 

potential vorticity mixing across the front and in the area of the recirculations. Rings 

are strong enough not to be completely dissipated in the recirculations; upon reach- 

ing a western boundary, they rejoin the eastward jet. Therefore, the model exhibits 

periods of large recirculations and weak eddy activity, when the model trajectory is 

in the vicinity of the antisymmetric fixed point, and periods of small recirculations 

and strong meander and ring activity. 

With further decrease in the interfacial friction, the model displays two distinct 

energy states. The high energy state has strong variability associated with well- 

developed recirculations of various zonal extents, described in the above paragraph. 

The low energy state corresponds to a flow regime where the separation point of 

the eastward jet exhibits large meridional excursions. Weak recirculations exist west 

of 1000 km only in the time mean sense. The strong eddy field is dominated by 

large amplitude, westward propagating meanders whose interaction with the western 

boundary current produces strong meridionally propagating rings. In comparison, 

McCalpin and Haidvogel [25] identified three preferred dynamical regimes each with 

a distinct energy level. Although the high and the medium regimes resemble the 

variability associated with the high energy state of the regional model, the low energy 

state is quite different from the one of the regional model. This is partly because the 

outflow conditions of the colliding jets model force the eastward jet to stay coherent, 

and therefore the model never reaches the point when the jet disappears almost right 

after separation, as in a low energy state of the wind-driven model. 

For low values of the interfacial friction coefficient, the flow stays in the dynam- 

ical regime described as a low energy state in the above paragraph. The amplitude 

of the eddy field is very strong, and small and weak recirculations exist only in the 

time mean sense. 

In a regional colliding jets model, the role of wind forcing is reduced to pre- 

scribing a particular distribution of streamfunction and potential vorticity on the 
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open boundaries. The local nature of such forcing allows isolating the role of internal 

barotropic dynamics of the jet and its interaction with the western boundary current 

as mechanisms responsible for the existence of low frequency variability and multiple 

dynamical regimes. The numerical experiments with the regional model show that 

low frequency variability is an inherent part of the barotropic dynamics where nonlin- 

earities are not too weak or too strong. The presence of the western wall is essential, 

since no low frequency variability or multiple dynamical regimes were observed in a 

barotropic, zonally asymmetric model of Jayne et al. [18], which was forced by an 

unstable zonal jet on the open western boundary and a stable zonal jet on the open 

eastern boundary. 

One of the most important properties of the regional model is a constant 

energy input, given by the boundary integrated energy flux vector. In comparison, 

in the wind-driven models, the forcing has global character, and the energy input 

strongly depends on the solution form. Scott and Straub [34] discussed a correlation 

mechanism between symmetric wind-forcing and a geostrophic current which led to 

ability of steady antisymmetric solutions to extract more energy than nonsymmetric 

solutions. The experiments with various wind asymmetry parameter in the model 

of McCalpin and Haidvogel [25] showed that for highly asymmetric wind forcing, the 

model was not able to reach high energy states. Since the regional model does not 

have any mechanism that restores the symmetry of the solution, it is harder for the 

model trajectory to reach and to stay in the vicinity of the antisymmetric steady 

solution. 

In the present study, we use a free slip boundary condition on the western 

boundary. As Berloff and McWilliams [3] showed, the presence of a no-slip boundary 

condition tends to destabilize western boundary currents. Eddies produced by such 

currents can be advected towards the middle of the domain and may interact with 

rings that propagate towards the western wall from the model's interior. Hence, the 

nature of low frequency variability and of multiple dynamical regimes might change 
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with the use of no-slip boundary condition due to more complicated dynamics of the 

western boundary current. This problem, however, is not addressed in the present 

thesis. 

In Chapter 5, we describe the results of the numerical experiments with a two- 

layer, colliding jets model which shows strong dependence of the flow structure on the 

bottom friction parameter. For small bottom friction, which implies a physically rel- 

evant lower layer flow, the model stays in a unique dynamical regime associated with 

the well-developed recirculations in both layers. To understand the nature of low and 

high frequency variability observed in the model, an extended spatial EOF analysis 

was performed for filtered streamfunction fields. The low frequency spatial EOFs 

are found to explain decadal and longer variability in the position of the eastward 

jet axis, as well as weak wrapping and zonal pulsations of the recirculation gyres. 

For quasi-annual and mesoscale variability, the EOF analysis shows the importance 

of wave-like structures sitting on the axis of the jet between the recirculating gyres 

with the length scale of 1000 km and the time scale of 8 to 9 months. The results of 

the EOF analysis for the regional model differ from the stability calculations of the 

zonally-symmetric jet, where the time scales are much shorter: typically, between 2 

and 4 months. 

For large values of the bottom friction coefficient, the lower layer flow becomes 

strongly frictional, and the recirculations disappear. However, the dynamics of the up- 

per layer flow becomes more complicated displaying both multiple dynamical regimes 

and low frequency variability which closely resemble those of the reduced-gravity 

model with weak interfacial friction. Such similarity between the reduced-gravity 

and the two-layer models is possible due to forcing provided by the lower layer flow 

on the upper layer flow, associated with strong bottom friction. 

The results of the two-layer calculations show that for physically feasible values 

of the bottom friction coefficients, the presence of baroclinic instability in the recir- 

culation area prohibits the existence of multiple dynamical regimes. However, weak 
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low frequency variability associated with changes in the structure and the strength 

of the recirculating gyres is still possible. In contrast with the reduced-gravity case, 

where steady antisymmetric solutions are useful for understanding the existence and 

the structure of a high energy state and the associated dynamical regime, an attempt 

to find steady antisymmetric solutions by employing a two-layer model with enforced 

antisymmetry failed. In disagreement with the original time dependent model, where 

the zonal extent of the recirculations varies between 500 km and 2500 km, the recir- 

culations reach all the way to the eastern sponge layer, and the flow is characterized 

by a statistically steady nonzero antisymmetric eddy field. Therefore, the total en- 

ergy level never reaches a steady state. One of the reasons why the antisymmetric 

steady state does not exist may be that the upper layer dissipation mechanism is 

presented only by biharmonic diffusion, which is not efficient at dissipating energy. 

Therefore, the balance between the nonlinear terms and dissipation is not possible, 

and time variability is essential. The question still remains whether the correspond- 

ing steady states are relevant to the behavior of the time-dependent model. As the 

system becomes progressively more complex, as in the case with both barotropic and 

baroclinic instability at work, the model might become purely turbulent, and the 

resulting dynamical state may be a strange attractor for a given parameter regime. 

In contrast, in the two-layer, wind-driven, quasi-geostrophic model by Berloff 

and McWilliams [4], rare transitions between three distinct dynamical states were 

possible. Compared with a corresponding reduced-gravity, wind-driven model, the 

presence of baroclinic instability weakened and regularized low frequency variability. 

When interpreting the results of the reduced-gravity and the two-layer col- 

liding jets models, one must remember that they are highly idealized. One of the 

basic simplifications used in the present study is the quasi-geostrophic nature of the 

flow, which overemphasizes the importance of horizontal structure of the ocean and 

which allows for only small perturbation of pressure and density surfaces from their 

original position. And although the quasi-geostrophic approximation proved to be a 
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useful tool in studying the mid-latitude ocean dynamics, a primitive equation model 

might halt low frequency variability. Even within the quasi-geostrophic approxima- 

tion, consideration of continuously stratified fluid might further reduce low frequency 

variability. 

Low-frequency variability is well documented in observations of the world 

oceans. Twenty two years of hydrographic data along 137°E show strong inter-annual 

bimodal path variations in the Kuroshio (Qiu and Joyce [30]). The net transport of 

the Kuroshio system which includes the jet and its recirculations increases by 30% 

during the meander-path years. The increase is primarily due to the decrease in the 

recirculation strength. Thus, recirculations are strongest during the straight-path 

years. Observations of East Australian current (Roemmich and Cornuelle [33]) and 

of Brazil and Malvinas currents (Olson et al. [26]) also display strong inter-annual 

variability. Observations of sea surface height in the Gulf Stream area by Kelly et 

al. [19] show a trend over two years from a state with a weakly-meandering jet and 

strong recirculations to a state with a strongly meandering jet and small recircula- 

tions. Sea surface temperature observations by Lee and Cornillon [21] indicate annual 

and inter-annual oscillations in the position of the Gulf Stream path. 

Although the colliding jets model isolating the internal dynamics of the jet as 

sources of low frequency variability is highly idealized, it produces similar variability 

for a wide range of dissipation parameters: namely, pulsations in the zonal extent 

of the recirculations, weak wrapping of the recirculations around each other and 

meridional shifts in the position of the jet. Another interesting feature of the model 

is the importance of wave-like structures with time scales between 9 months and 1.3 

years. Lee and Cornillon [21] indicated the importance of a 9-month cycle in the 

meandering intensity of the jet. Clearly, the zonally symmetric model was not able 

to reproduce this feature, since most energetic wave had much shorter time scales. 

Perhaps, in the real ocean, there are several mechanisms that could be re- 

sponsible for structural changes in the jet and in the recirculation area, such as the 
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presence of time varying winds, complicated topography, the instabilities of the jet 

and the inherent dynamics of the steady wind-driven circulation. The colliding jets 

model isolates the importance of one of them, the internal dynamics of the jet, and 

shows the differences between baroclinic and barotropic instabilities as sources of low 

frequency variability. Further studies are necessary for understanding of the role of 

time-varying winds and topography in low-frequency variability. 
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